DISTRIBUTION OF MYSIDACEA (CRUSTACEA) IN THE CANANEIA REGION

MARIA SCINTILA DE ALMEIDA PRADO
Instituto Oceanográfico - Universidade de São Paulo C.P 9075 - S. Paulo

DISTRIBUIÇÃO DE MYSIDACEA (CRUSTACEA) NA REGIÃO DE CANANĖIA RESUMO

Este trabalho apresenta o estudo de alguns aspectos ecológicos das espécies hipopelágicas de Mysidacea, coletadas na região lagunar de Cananéia, entre Lat. $2^{\circ} 04^{\prime} \mathrm{S}-24^{\circ} 58^{\prime} \mathrm{S}$ e Long. $47^{\circ} 54^{\prime} \mathrm{W}-47^{\circ} 56^{\prime} \mathrm{W}$.

Na realização deste trabalho foram utilizadas amostras de plâncton, coletadas mensalmente em 12 Estações, localizadas desde a proximidade da Barra de Cananéia até o interior dos "marigots". Coletas de plâncton foram feitas em profundidade, com rede D e, em superficie, com rede cônica de zooplâncton.

É analizada a distribuição espacial das espécies de Mysidacea no estuário em relação à salinidade, oxigênio dissolvido e profundidade de coleta e a variação sazonal, em relação à temperatura.

São discutidos alguns aspectos do ciclo de vida das espécies, com base na ocorrência de diferentes estágios de desenvolvimento.

Abstract

Six species of hypopelagic mysids were collected in the lagunar region of Cananeia (Lat. $25^{\circ} 04^{\prime} \mathrm{S}-24^{\circ} 58^{\prime} \mathrm{S}$ and Long. $47^{\circ} 54^{\prime} \mathrm{W}-47^{\circ} 56^{\prime} \mathrm{W}$). Mysidopsis tortonesi, Brasilomysis castroi and Metamysidopsis elongata atlantica with a wide distribution, Bowmaniella (C.) brasiliensis and Promysis atlantica with a distribution limited to the entrance of the main channel and Mysidopsis coelhoi which was rarely found at St. I and III. The quantitative horizontal distribution decreases in low values of salinity and dissolved oxygen. The largest occurrences of Mysidacea was recorded at deeper stations, where light penetration is minimal. Mysidopsis tortonesi was the dominant species in autumn, spring and winter and Brasilomysis castroi in summer. Mysidopsis tortonesi and Metamysidopsis elongata atlantica were more abundant in spring, Brasilomysis castroi in summer and Promysis atlantica occurred only during winter. There are good indications that young specimes migrate to surface layers at night while adults remain close the bottom. The co-existence, throughout the year, of a pcpulation composed by great number of young specimens and small number of adults, including gravid females, indicates continuous reproduction of these species.

[^0]
INTRODUCTION

Mysidacea have been considered an important element of the estuarine plankton. There are very few ecological records on shallow water mysids from tropical regions (Bainbridge, 1960; Ganapati \& Shyamasindari, 1959/62; Goodbody, 1965). The first assessment of mysids in South America was carried out by Almeida Prado (1972, in press).

This report is based on an annual collections of samples from the Cananeia region. The horizontal and vertical distribution of mysids, their seasonal variation and breeding are studied along the estuary.

Cananeia region is a mangrove environment situated on the São Paulo south coast (Brazil). It is composed by ramified channel which surrounds Cananeia Island. The channel is 1 to 3 km wide and 6 to 7 m depth, although sometimes it is as deep as 20 m . It receives oceanic waters through the barra de Cananeia and fresh water comes from rivers, "marigots" and land drainage (Kutner, 1962).

The area studied is limited by lat. $25^{\circ} 04$ 'S- $24^{\circ} 58^{\prime}$ 'S and long. $47^{\circ} 56^{\prime} \mathrm{W}$ $47^{\circ} 54^{\prime} \mathrm{W}$ (Figs. 1 and 2).

MATERIAL AND METHODS

During a one year period, plankton samples were taken monthly at 12 stations covering an area extending from the entrance of the main channel to the interior of the "marigots" (Fig. 2). The samples were taken with a D-net (mesh 295μ), in the depth, and with a conical zooplankton net (mesh 295μ), at the surface (Almeida Prado, 1972). Both nets were towed horizontally against tidal movements for a period of 5 minutes.

Plankton samples were preserved in alcohol 70% soon after collection. The material collected with D-net was washed with sea water through a sieve (mesh 295μ) before preservation. Then the mysids were picked from the samples and counted up.

Due to the large number of specimens the following classification criterium of the developmental stages was adopted: young (secondary sexual characteristics absent or in development), adult male, adult female and gravidic female.

FlE, 1 - Canan氏ia Region

Fig. 2 - Locations of collecting stations in the Cananéia Sea.

The vertical migration was studied based on samples collected at St. III (21/22-7-70). The samples were taken horizontally at 0 m , 4 m (zooplankton net) and at 8 m over the substratum (D-net), every 4 hours during a period of 24 hours. Both nets were towed for a period of 5 minutes.

In addition to this collection, surface plankton was taken by daylight during the period of one year (April/70 to May/71) in the Stations I, IV, V, X, XI, XII and in all stations (August and September, 69).

Salinity determinations were made by the Harvey method and dissolved oxygen by Winkler method. Temperature were recorded with a reversing thermometer adapted to a Nansen water bottle.

Light penetration (Kutner, 1972) was measured with a hydrophotometer and taken at the same time as the plankton samples.

The mean of specimens obtained at each station during the period of 13 months was studied in relation to the same mean values of salinity, dissolved oxygen and local depth of collection. The mean number of specimens collected at all stations every month was related to the same mean of temperature.

ENVIRONMENTAL FACTORS

The mean salinity decreases from the entrance of the main channel to the interior of the "marigot" The mean salinity at St. I was 28.05% and at St. XII was 10.03%. It ranged from 18.05% to 33.34% at St. I and from 02.23% to 20.68% at St. XII (Table I).

The mean dissolved oxygen per Station decreases from the entrance of the main channel to the interior of the "marigots" The higher means of dissolved oxygen, 4.51 and $4.63 \mathrm{ml} / \mathrm{l}$, were respectively obtained at St. I and VIII and the lower mean, $2.88 \mathrm{ml} / 1$, at St. XII (Table II).

The water flooding through the Barra of Cananeia contained 4.8 ml / l of oxygen, and the "marigot" water only had $2.3 \mathrm{ml} / 1$ of dissolved oxygen. The remarkably low quantity of oxygen in the "marigot" water is caused by a characteristic state of reduction in the upper reaches of the "river" and indicates a correlation with the quantity of reduced matter in the water (Kato, 1966).

TABLE I
Monthly salinity $(\% / 00)$ at 12 stations

DATA	STATIONS											
	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1969												
Sep.	28,47	30,65	26,60	20,60	x	26,99	27,68	24,53	22,40	24,43	22,34	20,68
Oet.	22,39	27,20	24,45	21,89	23,57	18,62	21,00	23,78	16,13	13,44	x	07,55
Nov.	18,05	25,76	13,27	I5, 32	x	15,43	15,48	14,49	03,46	02,52	01,05	X
Dec:	27,30	25,17	23,65	19,46	X	09,67	13,29	10,07	16,86	10,95	11,45	09,93
1970												
Jan.	33,15	30,77	28,63	29,33	25,36	22,68	10,62	20,01	16,68	15,12	11,81	10,39
Feb.	26,34	26,69	30,99	26,21	20,26	26,08	09,34	05,90	10,71	05,44	05,03	02,23
Mar.	30,73	32,47	29,85	24,13	80,05	30,54	26,36	II,21	07,11	11, 39	04,49	02,60
Apr.	33,34	30,84	28,92	23,59	31,71	28,68	24,37	21, 08	16,65	14,84	11,03	07,18
Day	21,22	27,43	24,87	24,87	20,14	21,91	19,99	-	-	14,45	20,97	13,20
Jun.	32,59	28,69	29,35	13,04	28,58	26,89	24,35	14,41	12,86	12,80	08,56	05.50
Jul.	28,34	26,90	-	25,94	25,31	31,09	28,58	24,05	19,03	22,56	11,07	11,13
Aug.	32,37	25,89	26,25	27,07	30,15	27,98	28,78	20,93	20,54	24,48	21,08	16,97
Sep.	30,38	21,07	27,49	28,44	30,24	23,03	27,00	18,44	17,66	17,43	10,21	12,91

x - not sampled.

The temperature is homogeneous in the area. The mean temperature of the 12 stations was higher ($27.42^{\circ} \mathrm{C}$) in January and lower $\left(19.95^{\circ} \mathrm{C}\right)$ in July (Table III).

The environmental records obtained at St. III (21-22/7/70) were very homogeneous throughout the water column. The vertical gradient of salinity was due to tidal moviments (Table IV).

The mean depth of the sampling in the main channel was higher than 6 m at St. I, III, V, about 4 m at St. II, IV, VI and VII; and in the "marigot" it was higher than 5 m at St. X, XII and lower than 4 m at St. VIII, IX and XI (Table V).

TABLE II
Monthly dissolved oxygen (ml/I) at 12 stations

DATA	STATIONS											
	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1969												
Sep.	5,49	4,94	5,54	5,47	x	5,37	5,49	5,04	4,79	5,25	4,79	4,68
Oct.	4,83	4,78	4,58	4,60	4,42	5,09	2,80	4,89	4,48	2,54	x	3,04
Nov.	-	-	-	-	x	-	-	-	-	-	-	z
Dec.	4,89	5,08	4,56	4,63	x	5,25	5,28	5,28	3,30	3,74	2,03	2,98
1970												
Jan.	4,25	3,86	4,40	3,72	3,64	3,69	4,17	4,12	4,18	2,157	2,96	2,06
Deb.	3,36	1,96	3,76	3,74	3,27	3,69	3,75	4,37	2,54	2,35	1,81	2,33
Mar .	3,52	3,52	3,24	3,52	3,53	3,12	3,10	4,31	1,48	3,54	1,87	1,89
Apr.	4,40	4,40	4,19	4,53	4,00	3,99	4,05	4,94	4,61	4,47	3,00	2,48
May .	3,97	4,23	4,26	3,62	4,12	4,60	4,25	4,75	3,10	4,50	3,72	3,36
Jun.	-	-	-	4,04	3,99	3,93	3,94	3,55	2,80	3,57	3,41	2,88
Jul.	4,80	4,94	5,37	5,40	4,69	4,84	4,81	5, 14	3:34	3,66	4,07	3,83
Aug.	4,46	4,80	4,82	3,35	4,60	4,89	4,84	4,90	2,50	4,56	4,04	3,33
Sep.	5,60	4,60	4,60	4,00	3,39	3,40	4,00	4,30	2,30	3,40	3,90	2,70

X - not sampled

TABLE III

Monthly temperature (OC) at 12 stations

DATA	STATIONS											
	I	II	III	IV	V	VI	VII	VIII	IX	X	XI.	XII
1969												
Sep.	22,0	20,4	20,9	21, 1	x	20,8	20.7	20,9	20,5	20,7	21,0	21,3
Oct.	21,7	21,2	21,0	21,2	22,1	23,2	22,2	22,5	23,1	22,5	x	23,8
Nov.	23,2	24,4	24,5	24,4	x	26,2	26,0	26,0	24,5	27,4	26,4	x
Deg.	-	25,0	25,5	24.9	x	25,7	25,6	26,5	27,0	26,7	26,9	27,6
1970												
Jan.	26,4	27,0	27,2	27, 1	27,2	27,5	27,6	27,7	28,1	27,5	27,9	27,9
Feb.	27,1	27, 3	27,0	27,3	27,3	27,2	26,7	28, 1	26,2	26,2	26,2	26,1
Max.	26,4	26,5	26,4	26,6	26,2	26,4	26,5	26,9	26, 3	26,1	24,1	24,3
Apr.	26,0	26,1	26,1	26,1	25,9	26, 1	26,0	26,4	26,5	26,0	24,8	24,2
May	23,0	22,5	22,0	22,5	22,9	23,4	23,1	22,9	22,8	23,3	23,0	22,8
Jun.	21,5	21,9	22,1	21,6	22,3	22,3	22,2	22,4	21,5	21,8	21.7	21,3
Jul.	19,9	20, 1	19,7	20,0	19,9	20,0	20,0	20, 1	20,1	19,8	20,1	19,8
Aug.	19,0	19,0	18,9	20,6	19,5	19,9	19,9	20,5	20,6	20,5	20,7	20,6
Sep.	21.4	21,9	21, 3	20,8	22,4	21,2	20,8	22,1	20,8	21,2	21, I	21,3

x - not sampled

TABLE IV

Hydrographical data: Salinity ($\% / 00$), Temperature ($O C$) and dissolved oxygen ($\mathrm{ml} / 1$).

St. III - Data: 21-22/07/1970

DEPM (II)	T IME						
	20:00	24:00	04:00	08:00	12:00	16:00	20:00
Salinity ($/ 00$)							
0	27,19	20,86	22,46	25,37	25,37	18,68	25,69
4	27,71	23,16	29,43	26,30	21,04	22,29	28,43
8	28,29	23,22	29,28	26,33	22,75	25,44	29,45
Temperature (0 C)							
0	19,90	19,90	19,70	19,80	19,90	19,90	19,90
4	19,90	19,90	19,80	19,90	19,80	19,90	19,90
8	19,90	19,90	20,00	19,90	19,70	19,80	20,00
Dissolved oxyen (ml/)							
0	5,35	4,96	4,93	4,88	5,09	5,21	4,89
4	4,77	4,93	4,74	4,80	4,90	5,02	4,87
8	4,78	4,90	4,67	4,85	5,37	4,80	4,86

TABLE V
Local depth of collection at 12 stations

DAIA	STATIONS											
	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1969												
Sep.	7,0	5,0	7,0	4,5	x	5,0	5,0	3,0	1,0	7,0	5,0	5,0
Oct.	4,0	4,0	5,5	4,0	8,0	2,0	5,5	1,5	4,5	1,5	x	7,0
ITOV.	5,0	5,0	5,0	4,0	x	3,5	3,0	4,0	2,5	6,0	5,0	x
Deas	6,0	3,5	5,0	3,5	x	3,0	6,0	3,0	2,0	2,0	4,0	4,0
1970												
Jan.	9,0	4,5	8,5	5,0	7,0	5,0	5,0	3,0	3,0	7,5	2,5	3,5
Feb.	6,5	4,0	3,0	5,0	8,0	4,5	4,0	2,5	5,0	5,0	3,5	3,0
Mar.	5,0	5,5	8,0	5,0	8,0	5,5	4,0	2,5	2,5	8,5	6,0	6,5
Apr.	6,5	2,0	5,0	2,5	10,0	4,0	4,5	2,0	5,0	8,0	4,0	2,0
May	7,0	2,5	4,0	2,5	4,5	4,0	5,5	2,0	5,5	2,0	7,0	6,5
Jun.	6,5	3,5	7,0	1,5	4,0	3,5	4,0	1,5	5,5	6,0	2,0	6,0
Ju.	10,0	1,5	8,0	3,5	9,0	3,5	3,5	I, 0	5,0	6,0	1,5	5,5
Aug.	7,0	7,0	7,0	5,5	6,0	6,0	5,0	2,5	5,0	9,5	3,5	7,0
Sep.	4,0	4,0	4,0	4,0	11,5	4,0	3,5	1,5	5,0	7,0	1,5	6,0

I - not sampled.

RESULTS

Mysidopsis tortonesi Bacescu

Abundance - Mysidopsis tortonesi was the most abundant species with a wide distribution in the area studied. The frequency of the species, in the samples collected, was 45.69%. A total of 62,489 specimens was found in the monthly collections and 1,647 in the samples of the vertical distribution. It occurred throughout the year (Table VI).

NIMBER OF SPECTMENS OF MYSIDOPSIS TORTONESI COLLECTED AT FACH STATION DIRTIN THE PFRIOD OF SEP/69 TO sEP/70

data	DEVELOPMENTAL STaGES	STATION												TOTAL
		1	II	III	IV	v	VI	VII	VIII	IX	X	XI	XII	
Sep/69	young male female	69 - -	- 43 $-\quad$	$\begin{array}{r} 1.316 \\ \\ 18 \\ (1) \\ \hline \end{array}$	21 $-\quad 2$	I	 - $-\quad 1$	$\left\lvert\, \begin{array}{r} 5.796 \\ \\ 998 \\ (127) \\ 340 \end{array}\right.$	-	$\begin{array}{r} 117 \\ -\quad 1 \end{array}$	$\begin{array}{r}53 \\ -\quad 1 \\ \hline\end{array}$	-	-	$\begin{array}{r} 7.416 \\ 1.318 \\ 344 \end{array}$
Oct/69	young male female	304 30 17	51 1 $-\quad 1$	$\begin{array}{r} 17.544 \\ 1.225 \\ (28) 534 \end{array}$	$-{ }_{-}^{453}$	13.204 249 $(11) 191$	955 5 7	229 6 1	26 1 1	1 $-\quad 1$ -	1.129 21 (1) 7	x		$\begin{array}{r} 1.897 \\ 1.533 \\ 758 \end{array}$
Nov/69	y oung male female	$\begin{array}{r}34 \\ 3 \\ 4 \\ \hline\end{array}$		-		x	-	-	$\begin{array}{r} 29 \\ 2 \\ 4 \end{array}$			-	1	$\begin{array}{r} 65 \\ 5 \\ 10 \end{array}$
Dec/69	young mele femble	222 - -	-	-	- $\quad 2$	x	-	 - $-\quad 20$	-	-		-	-	244
Jan/70	young male Pemele	66 - -	-	 - -	242 1 1	-	-	10 $-\quad$ $-\quad 1$	$\begin{array}{r}33 \\ 3 \\ 1 \\ \hline\end{array}$	-	-	-	-	$\begin{array}{r} 387 \\ 4 \\ 2 \end{array}$
$\mathrm{Feb} / 70$	young male female	$\begin{array}{rr} 22 \\ & 3 \\ & \text { (2) } \\ \hline \end{array}$		$\begin{array}{r} 327 \\ \\ 22 \\ (6) \quad 11 \\ \hline \end{array}$		-	(1) 2	-	-	-		-	-	$\begin{array}{r} 543 \\ 45 \\ 38 \end{array}$
Mar/70	young male Pemale	-	-	-	-	1 $-\quad 1$ $-\quad 1$	- ${ }^{1}$	-	-	-	-	-	-	- ${ }^{2}$
Apr/ 70	young male female	-	5 $-\quad 1$	$-\quad 9$ $-\quad$	-	 $\begin{aligned} & 7 \\ & 1\end{aligned}$	-	115 66 (72) 79	-	-	-	-	-	$\begin{array}{r} 136 \\ 67 \\ 81 \end{array}$
May/70	y oung male female	$\begin{array}{r} 11.967 \\ 8 \\ \text { (10) } \\ \hline 11 \end{array}$	- -	$\begin{array}{ll} & 1 \\ - \\ - & \end{array}$	-	-	-2 $-\quad$	-	-	-	-	-	-	$\begin{array}{r} 11.975 \\ 8 \\ 11 \end{array}$
Jun/70	y oung mele feinale	- 34	(1) $\begin{array}{r}46 \\ \\ \hline\end{array}$	29 3 1	- -	Cl^{-46}	$\begin{array}{r} 25 \\ -\quad 1 \end{array}$		-	-	-	-	-	210 4 8
Jul/70	young male female	$\begin{array}{r}449 \\ 8 \\ 1 \\ \hline\end{array}$	-	[$\begin{array}{r}471 \\ 71 \\ \text { (15) } 70\end{array}$	-	14 4 2	$\begin{array}{r} 23 \\ 1 \\ 1 \end{array}$	$\begin{array}{\|rr\|} & 186 \\ & 3 \\ (3) & 7 \\ \hline \end{array}$	-	-	-	-	-	$\begin{array}{r} 1.143 \\ 87 \\ 81 \end{array}$
Aug/70	y oung rale female	$\begin{array}{r} 502 \\ -\quad 1 \end{array}$	- ${ }^{530}$	$-{ }_{-}{ }_{-}$	1 $-\quad$	$\begin{array}{r} 13 \\ 1 \\ 1 \end{array}$	-	$\begin{array}{rr} & 591 \\ & 32 \\ (1) & 20 \\ \hline \end{array}$	-	-	-	-	-	$\begin{array}{r} 1.956 \\ 33 \\ 27 \end{array}$
Sep/ 70	young male feinale	60 - -	-	44 $-\quad$ $-\quad 4$	4 $-\quad 4$ $-\quad 4$	234 $-\quad 1$	- -	-1	-	-	-	-	-	354 $-\quad 2$
total		13.819	923	22.048	729	13.974	1.036	8.529	100	119	1.211	-	1	

() - number of gravidio female

+ - not sampled

Horizontal distribution - The species occurred at stations with a mean salinity ranging from 14.50% to 28.00% but it was more abundant in salinities higher than 21.00%. The largest abundances and frequencies of specimens occurred at stations with mean dissolved oxygen ranging from $3.68 \mathrm{ml} / 1$ to $4.51 \mathrm{ml} / 1$. The largest occurrence of this species was found at Sts. I, III, V and VII where the mean depth was always greater than $4,5 \mathrm{~m}$.

Seasonal variation - Two maxima periods of occurrence - Sept./ Oct. (1969) and May (1970), plus three periods of minimum occurrence - November (1969), March and August (1970) - were recorded. The largest occurrences were registered during the months when the mean temperature varied from $20.93^{\circ} \mathrm{C}$ to $25.30^{\circ} \mathrm{C}$.

Number of specimens of M. tortonesi found by season:

Number of specimens	Spring	Summer	Autumn	Winter
	45,046	1,263	12,280	3,544

Vertical distribution - 19.61% of specimens were found at the surface, $5,03 \%$ at 4 m depth and 75.34% over the bottom (8 m deep). The largest occurrence at the surface was recorded at $12: 00 \mathrm{p} . \mathrm{m}$. and 16:00 p.m. and at the greatest depth at 08:00 a.m. and 12:00 a.m. The young specimens migrate to the surface layers and the adults remain close to the bottom (Table XI).

Biological cycles - The total populations of Mysidopsis tortonesi at all stations during the period of 13 months was composed of 93.34% young and 6.65% adult specimens. The results of each month showed that the percentage of young specimens ranged from 100% to 81.25% excepting in April when the percentage of young specimens was 47.88%.

The percentual occurrence of male and female varied throughout the period of collection. Males were dominant in September, October and November 1969 and females in May, June, July and August 1970.

The frequency of gravidic females in the samples in which the species occurred was 29.41%. The larger percentages of gravidic females among adult females was found in April and in May 1970.

The large number of adult specimens in September and October 1969 occurs at the same time as the larger and wider penetration of the species into the estuary.

Brasilomysis castroi Bacescu

Abundance - Brasilomysis castroi was the second species in abundance with a wide distribution in the area studied. The monthly frequency of the species was 33.74%. A total of 3,930 specimens was found in the monthly collections and 43 in the samples taken for the study of the vertical distribution. The species occurred throughout the year (Table VII).

Horizontal distribution - The species was found at stations with mean salinities ranging from 17.40% to 28.00%, although it was more abundant at stations with mean salinities higher than 23.00%, and mean dissolved oxygen ranging from $3,97 \mathrm{ml} / 1$ to $4,63 \mathrm{ml} / \mathrm{l}$. The largest occurrence of Brasilomysis castroi was found at St. I and III where the average depth was higher than 6 m .

Seasonal variation - One period of maximum abundance - January/February 1970 - and three of minimum numbers - November/ December 1969, March and July 1970 - were registered.- The largest abundance of specimens occurred in waters with temperature greater than $25.00^{\circ} \mathrm{C}$.

Total number of Brasilomysis castroi per season:

Number of specimens	Spring	Summer	Autumn	Winter
	387	2,771	531	237

Vertical distribution - Brasilomysis castroi was scarcely represented by 43 specimens in this collection. The samples were taken in July during the minimum occurrence of this species. They were mostly collected at 4 m (Table XI).

Biological cycles - The total population of Brasilomysis castroi obtained at all stations throughout 13 months was composed by 91.98%

TABLEVII
NUMBER OF SPECINENS OF BRASILOMYSIS CASTROI AT EACE STATIONS DURING THE PERIOD SEP/69 TO SEP/70

DATA	DEVELOPMENTAL STAGES	STATIONS												TOTAL
		I	II	III	YY	V	VI	VII	VIII	IX	X	II	XII	
Sep/69	young male female	- 6	5 2 $-\quad 4$	$\begin{array}{r} 20 \\ 1 \\ 4 \end{array}$	1 1 $-\quad$	z		9 - -		-	$-\quad 2$	- - -	-	38 4 4
Oct/69	young male female	- 1		$\begin{array}{r} 66 \\ 3 \\ (1) 5 \end{array}$		$\begin{array}{r} 241 \\ 3 \\ \text { (1) } 3 \end{array}$	$-\quad 6$	-2			1 -	x	-	$\begin{array}{r} 327 \\ 6 \\ 8 \end{array}$
Nov/69	young male female					I		$-$					I	
Dec/69	young male female	- 2		- $\begin{array}{r}1 \\ 1\end{array}$	-	I							-	$\begin{array}{r} 5 \\ -\quad \\ \hline \end{array}$
Jan/70	joung male female	162	-	377 - -	$\begin{array}{r} 453 \\ 3 \\ (2) 7 \end{array}$		-	52 - -	$\begin{array}{r} 227 \\ 7 \\ (7) 12 \end{array}$	--			-	$\begin{array}{r} 2.17! \\ 10 \\ 19 \end{array}$
Feb/70	young male female	$\begin{array}{r} 72 \\ 7 \\ \text { (8) } 19 \end{array}$	$\begin{array}{r} 88 \\ 12 \\ (16) 24 \end{array}$	$\begin{array}{r} 1.189 \\ 49 \\ (48) 93 \end{array}$	$\begin{gathered} 7 \\ - \\ (1) 1 \end{gathered}$	-1 -1	$\begin{aligned} & 2 \\ & 1 \end{aligned}$						-	$\begin{array}{r} 1.358 \\ 70 \\ 137 \end{array}$
Mar/70	young male ferale			-	-	1 1	-	-	-	-	-	-	-	1 1 $-\quad$
Apr/70	young male female	-	- 1	- ${ }^{5}$		$\begin{array}{r} 10 \\ 1 \\ \text { (2) } 8 \end{array}$			-		-	-	-	$\begin{array}{r} 42 \\ 6 \\ 27 \end{array}$
liay/70	young male female	$\begin{array}{r} 435 \\ 1 \\ (1) 8 \end{array}$	-1	-1		- 8			-		-	-	-	$\begin{array}{r} 445 \\ 1 \\ 8 \end{array}$
Jun/70	young male female	-	$\begin{array}{r} 47 \\ 2 \\ (1) 1 \end{array}$	- $\begin{aligned} & 35 \\ & -\end{aligned}$	-1	- 8	$\begin{array}{r} 1 \\ (1) 3 \end{array}$		-		-	-	-	$\begin{array}{r} 91 \\ 3 \\ 4 \end{array}$
Jul/70	young male ferale			1 1 -									-	$\begin{array}{r} 1 \\ 1 \\ -\quad \end{array}$
Aug/70	young male female	$\begin{array}{r} 124 \\ 1 \\ \text { (2) } 3 \end{array}$		7 - -				-2					-	$\begin{array}{r} 133 \\ 1 \\ 3 \end{array}$
Sep/70	young male female	$\begin{gathered} 6 \\ - \\ (1) 1 \end{gathered}$		-2	-1								-	$\begin{array}{r} 12 \\ -\quad \\ 1 \end{array}$
TOTAL		848	183	1.350	477	289	13	116	146	5	3	-	-	

() - number gravidic fenale

- - not sampled
of young and $8,01 \%$ of adult specimens. The percentage of young ranged from 97.80% to 56.00% during the months in which more than 10 specimens occurred. The percentage of females among adults varied from 50.00% to 81.81% discarding the data of NovemberDecember 1969, March-April and September 1970, when the adults were represented by only one specimen.

A small amount of gravidic females were found throughout the period, excepting in November 1969, March and July 1970 when the species was scarcely represented. The larger occurrence of gravidic females coincides with the larger penetration of the species into the estuary.

Brasilomysis castroi showed a regular penetration in the main channel up to St. VII, but in January 1970 it was present in large number, including adult specimens, at the mouth of the "marigot" Nobrega.

Metamysidopsis elongata (Holmes) atlantica Bacescu
Abundance - Metamysidopsis elongata atlantica was the third species in abundance with a wide distribution in the area studied. The frequency of the species in samples studied was 35.09%, with a total of 2,823 specimens in the monthly collection, and 22 in the vertical migration samples. It occurred throughout the year (Table VIII).

Horizontal distribution - The species occurred at stations with mean salinity ranging from 14.00% to 28.00%, although it was more abundant at stations with mean salinities higher than 23.00%, and mean dissolved oxygen ranging from $3.28 \mathrm{ml} / 1$ to $4.51 \mathrm{ml} / 1$. It was more abundant in water with dissolved oxygen higher than $4.22 \mathrm{ml} / \mathrm{l}$. The higher occurrence of this species was found in the St. I, IV and VI where the mean depth ranged from 3.5 to 6.5 m .

Seasonal variation - Two maxima of abundance - SeptemberOctober 1969 and August 1970 - and one minimum - July 1970 was registered. The largest number was found in the months with temperature varying from $19.00^{\circ} \mathrm{C}$ to $23.00^{\circ} \mathrm{C}$.

Number of Metamysidopsis elongata atlantica specimens per season:

Number of specimens	Spring	Summer	Autumn	Winter
	1,652	150	130	863

Vertical distribution - Metamysidopsis elongata atlantica was scarcely represented in this collection. Only 7 specimens out of 22 were found at midnight at the surface. Adults were absent (Table XI).

The results of a monthly superficial collection made at St. IV (19681969), every 4 hours at night and every 2 hours during daylight showed the following number of specimens $/ \mathrm{m}^{3}$.

Data	Time				
	8 p.m.	12 p.m.	4 a.m.	$6 \mathrm{a} . \mathrm{m}$. to 4 p.m.	6 p.m.
25-26/09/68	766	666	5,733	-	-
30-31/10/68	133	-	333	-	-
27-28/11/68	-	-	33	-	-
20-21/01/69	33	-	-	-	-
17-18/06/69	300	33	-	-	-
27-28/08/69	200	--	-	-	33

The collection was obtained by filtration of a 30 litres samples through a meshed net 50μ, a process carried out by the staff of the Plankton Section of the Instituto Oceanográfico - Universidade de São Paulo.

Biological cycles - The total population of Metamysidopsis elongata atlantica obtained from all the stations throughout the 13 months was composed by $89,44 \%$ young and 10.55% adult specimens. The occurrence of young specimens varied from 14.28% to 99.40%. The monthly percentage of young specimens ranged from 14.28% to 9940%. Among adults, 60.73% were female and 34.08% were male and the monthly results showed a higher number of females

TLBLEVIII
HUMBER OF SPECTMENS OF METAMYSIDOPSIS ELONGATA ATLANTICA COLLECTED AT EACH STATIUN DURTNG THE PERIOD SEP/G9 TO SEP/T

DATA	developmental STAGES	STATIONS												TOTAL
		I	II	II I	IV	V	VI	VII	VIII	IX	$\bar{\chi}$	XI	XII	
Sep/69	joung male pemale	$\begin{array}{r} 517 \\ 25 \\ -\quad \end{array}$	32 - -	94 - -	16 1 $-\quad$	x	-	-	-	14 - -	$\begin{aligned} & 85 \\ & - \\ & - \end{aligned}$	-	-	$\begin{array}{r} 758 \\ 26 \end{array}$
Oct/69	young male fomale	155 1 2	7 - -	32 - $(4) 4$	89 - -	2 1 (1) 10	$\begin{array}{r} 385 \\ 18 \\ (1) 52 \end{array}$	3 4 2	-	17 - 2	$\begin{aligned} & 38 \\ & 11 \\ & 11 \end{aligned}$	x		$\begin{array}{r} 728 \\ 35 \\ 83 \end{array}$
Nov/69	young male female	-	15 - 1	$(1) 1$	4 1 $-\quad$	I						x	-	$\begin{array}{r} 19 \\ 1 \\ 2 \end{array}$
Dec/69	young uale female	$\begin{array}{r} 58 \\ 7 \\ 11 \end{array}$		-	26 - -	I	-							$\begin{array}{r} 84 \\ 7 \\ 11 \end{array}$
Jan/70	young male female	$\begin{aligned} & 3 \\ & 2 \\ & 2 \end{aligned}$	3 1					--	1			-	-	$\begin{aligned} & 4 \\ & 5 \\ & 4 \end{aligned}$
Feb/70	young male female	$\begin{gathered} 8 \\ - \\ (1) 1 \end{gathered}$	-	$\begin{array}{r} 10 \\ 2 \\ (8) 8 \end{array}$	$-\begin{array}{r}2 \\ 1\end{array}$	-	-3	-	-		-	-	-	$\begin{array}{r} 23 \\ 2 \\ 10 \end{array}$
Mar/70	young male female	$\begin{array}{r} 5 \\ 7 \\ \text { (2) } 3 \end{array}$	-	-3	-3	-	-	- - 3	-	-	-	-	-	$\begin{array}{r} 11 \\ 7 \\ 6 \end{array}$
Apr/70	young oale fobale	-	1 7 (5) 9	$\begin{array}{r} 6 \\ 13 \\ (13) 19 \end{array}$	-	$\text { (3) } 4$	-	5 6 (12) 13	$(1) 1$	-			-	$\begin{aligned} & 12 \\ & 26 \\ & 45 \end{aligned}$
May/70	young male female	9 3 (8) 9	-	-	-	-	-	-	-	-	-	-	-	$\begin{array}{r} 9 \\ 3 \\ 20 \end{array}$
Jun/70	young male female	8 3 $(2) 3$	$-$	$-$	-	-	-	-	-	-	-	-	-	$\begin{array}{r} 15 \\ 3 \\ 5 \end{array}$
Jul/	young male female	-1						-	-	-		-	-	
Aug/70	young male female	146 1 1	-	97 - -	$\begin{array}{r} 559 \\ 2 \end{array}$	-	-1	17	$\begin{gathered} 12 \\ (1) 1 \end{gathered}$		-2	-		$\begin{array}{r} 834 \\ 3 \\ 2 \end{array}$
Sep/70	young male female	26 - 1										-		27
TOTAL		1.018	81	292	704	19	460	54	15	33	147	-	-	

() - number of gravicio female

+ - not sampled
than males. Gravid females occurred during the four seasons and its percentage among adult females was $28,30 \%$.

d - Bowmaniella (C.) brasiliensis Bacescu

Abundance - Bowmaniella (C.) brasiliensis was the fourth species in abundance with a distribution limited to the entrance of the main channel (St. I and III). A total of 348 specimens in the monthly and 132 specimens in the samples of the vertical collections were obtained. It occurred throughout the year, excepting in November (Table IX).

Horizontal distribution - It was found at St. I and III, where the mean salinity ranged from 26.00% to 28.00%, although it occurred sporadically up to St. XII with an average salinity of 10.03%, and a mean of dissolved oxygen between $4,48 \mathrm{ml} / 1$ to $4,51 \mathrm{ml} / 1$. The average depth at these two stations was higher than 6 m (Table XII).

Seasonal variation - The maximum abundance was found in autumn and the minimum in summer. The largest amount of specimens was found in April, May and August when the mean temperature ranged from $25.85^{\circ} \mathrm{C}$ to $19.75^{\circ} \mathrm{C}$.

Number of specimens of Bowmaniella (C.) brasiliensis per season:

Number of specimens	Spring	Summer	Autumn	Winter
	79	19	151	98

Vertical distribution - A percentage of 35.60% was found at the surface, 4.54% at 4 m depth and 59.85% at the bottom $(8 \mathrm{~m}$ depth). At the surface, during daylight, it was represented by only 3 specimens. Adult specimens were found only at the bottom (Table XI).

Biological cycles - The total population of Bowmaniella (C.) brasiliensis obtained, at all stations, throughout 13 months was composed by 95.11% young and 4.87% adult specimens. The frequency
of gravidic females, at the stations where the species occurred was 7.40%.

Promysis atlantica Tattersall

Abundance - Promysis atlantica was the fifth species in abundance. Its distribution was mainly limited to stations I, II and III, but it occurred up to St. VII. The monthly frequency of the species was 5.96%. It was represented by 133 specimens in the monthly collection and only by 2 specimens in the vertical distribution samples (Table X).

Horizontal distribution - The larger occurrences of Promysis atlantica were found at stations I and III, where the mean salinity ranged from 26.00% to 28.00%, the mean dissolved oxygen from $4.48 \mathrm{ml} / 1$ to $5.51 \mathrm{ml} / \mathrm{l}$, and the mean depth was higher than 6 m .

Biological cycles - The species occurred only in winter months. Young and adult specimens were found. The total population was composed by 34.51% young and 65.48% adult specimens. Among adults the percentage of females ranged from 60.00% to 75.80%. The percentual occurrence of gravidic females among adult females was higher than the other species, it varied from 34.04% to 50.00%. The frequency of gravidic females in samples in which the species was present totalled 88.88%.

Mysidopsis coelhoi Bacescu
This species occurred occasionally at St. I and III. One specimen was found at St. II and another at St. III in August 1970. In September 1970 only one specimen was found at St. III. It was represented by 4 specimens at the depth in the vertical distribution samples. All specimens collected were adults, 5 were males and 2 females.

DISCUSSION AND GENERAL CONCLUSIONS

The six species had already been found in Brazilian coastal waters and in the eastern coast of the United States (Bacescu, 1868a, b, c; Tattersall, 1923, 1951; Brattegard, 1969; Costa, 1964; Wigley \& Burns, 1971; Almeida Prado, 1972, in press). All these data refer only to systematics and occurrences.

NUMBER OF SPECTEENS OF BOMMANIELLA (C.) BRASILIENSIS COLLECTED AT EACH STATIONS DURTNG TME PERIOD OF SEP/69 TO SEP/7O.

data	DEVELOPYENTAL STAGES	STATIONS												total
		I	II	II I	IV	V	VI	VII	VIII	IX	X	XI	XII	
Sep/60	young male pemale	$\begin{array}{r} 23 \\ 1 \\ 4 \end{array}$				I		-	- - -	-	-	-	-	$\begin{array}{r} 23 \\ 1 \\ 4 \end{array}$
00t/69	younz male female	-		47 - -	-	- 2	- 1	-	-	-	-	I	1 - -	- 51
Hov/69	youns male emale					x		-			-	-	x	-
Dec $/ 69$	y ounz aale female	- 6				I					-		-	6 - -
Jan/70	young male female	$-{ }_{-}^{3}$						-	-	-	-	-	-	3 $-\quad$
$\mathrm{Feb} / 70$	young male female	$\begin{array}{r} 4 \\ 1 \\ (2) 2 \end{array}$	-3				-	-			-	-	-	$\begin{aligned} & 7 \\ & 1 \\ & 2 \end{aligned}$
Kar/70	y oung male female	-					-	-	-	-	-	-	-	
Apr/70	young male peazle	- 23	-	- 11	-	-	-	-1		-	-	-	-	$\begin{array}{r} 35 \\ -\quad \\ 2 \end{array}$
May/70	young male female	$\begin{array}{r} 105 \\ 4 \\ (1) 2 \end{array}$	-							- - -	-	-	-	$\begin{array}{r} 107 \\ 4 \\ 2 \end{array}$
Jun/70	young male female	7 - -	-2	- 8					-	-	-	-	-	- 17
Jul/70	youns male female	- 11	$\begin{array}{r} 2 \\ 1 \\ -\quad \end{array}$				- 6	$-\quad 2$		-	-	-	-	29 1
Aug/ 70	young male female	38	8	5							-	-	-	51
Sep/70	young male female	-1								-	-		-	
TOTAL		237	17	81	-	2	7		-	-	-	-	1	

() - number of gravidic female

- - not sampled

TABLEX
NUEAER OF SPECIMENS OF PRONYSIS ATLANTICA COLLECTED AT EACH STATION DURING THE PERIOD OF SEP/69 TO SEP/7O

DATA	Developmental stages	STATION												TOTAL
		Σ	II	III	IV	∇	VI	VII	VIII	IX	X	XI	XII	
Sep/69	-	-	-	-	-	I	-	-	-	-	-	-	-	-
Oct/69	$*$	-	-	-	-	-	-	-	-	-	-	I	-	-
Nov/69	-	-	-	-	-	x	-	-	-	-	-	-	I	-
Dec/69	-	-	-	-	-	$\boldsymbol{\pi}$	-	--	\cdots	-	-	-	-	-
Jan/70	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Feb/70	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mar / 70	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Apr/70	-	-	-	-	-	-	-	-	-	-	-	-	-	-
May/70	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Jun/ 70	young	4	6	21	-	-	-	-	-	-	-	-	-	31
	male	-	1	3	-	-	-	-	-	-	-	-	-	4
	remale	-	(1)2	(2) 3	-	(1) 1	-	-	-	-	-	-	-	6
Ju1/70	y oung	5	-	-	-	-	-	-	-	-	-	-	-	5
	male	5	-	-	-	-	-	-	-	-	-	-	-	5
		(2) 8	-	-	-	-	(2) 2	-	-	-	-	-	-	
Aug/70	y oung	8	-	2	-	-	-	-	-	-	-	-	-	10
	male	14	-	1	-	-	-		-	-	-	-	-	15
					-		-		-	-	-	-	-	47
Sep/70	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL		87	9	33	-	1	2	1	-	-	-	-	-	

() - number of gravidio female

+ - not sampled

TABLEXI

VERTTCAL DYSTRTBUTION OF MYSIDS
ST. III - DATA: 21-22/07/1970

DEPTE (m)	STECIES	T IXE																				
		2),00			24103			04:00			$08: 00$			12:00			16:00			20:00		
		y oung	male	fentule	y oung	m.alo	female	y oung	mele	femele	y oung	male	female	young	male	female	young	male	fomale	young	male	semale
0,0	Myaidopals tortonesi	15	-	-	157	-	1	-	-	-	-	-	-	5	-	-	135	-	-	9	-	-
	Brasilomysis castroi	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	-	-	-	-	-
	Metamysidopsis elongata atlantica	-	-	-	6	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Bowraniella (c.) brasiliensis	35	-	-	11	-	-	-	-	-	-	-	-	1	-	-	2	-	-	20	-	-
	Promysis atlantica	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	yysidopsia coelnot	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	,
TOTAL		50	-	-	174	-	2	2	-	-	-	-	-	6	-	-	143	-	-	19	-	-
4.0	Wysidopsis tortonesi	29	2	-	9	-	-	11	-	-	26.	2	4	-	-	-	-	-	-	-	-	-
	Brasilorysts castroi	-	-	-	\checkmark	-	-	-	-	-	26	2	4	-	-	-	-	-	-	-	-	-
	Metaysidcosts elongata atlantica	-	-	-	-	-	-	-	-	-	--	-	-	-	-	-	-	-	-	-	-	-
	Eowmaniella (c.) brastliensts	-	-	-	5	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Proxysis atlantioa	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Hysidopsis coelhoi	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTEL		29	2	-	14		-	12	-	-	52	4.	8	-	-	-	-	-	-	-	-	-
8, 3	Cysidopsts tortonesi	21	6	9	30	5	(1) 6	87	7	(8) 12	330	37	(1) 62	471	71	(15) 70	13	-	-	4.	-	-
	Brasilomysis castroi	-	-	--	-	-	-	-	-	-	2	1	-	1	1	-	1	-	-	-	-	-
	Metamysidopsis elongata atlantica	6	-	1	3	-	1	2	-	1	-	-	-	-	-	-	1	-	-	-	-	-
	Bowmaniella (C.) brasiliensis	38	-	-	-	-	(1) 2	2	1	-	8	-	3	8	-	-	10.	3	3	1.	-	-
	Promysis atlantica	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Mysidopsis coelhot	-	-	-	-	2	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-
TOTAL		65	6	10	33	7	9	92	8	12	340	38	67	480	72	70	25	3	3	5	-	-

() - number of gravidic fetrale

There are many references in the literature about the distribution of Mysids in estuaries from temperate regions where salinity and dissolved oxygen are considered as important controller factors of their distributoin (Percival, 1929; Tattersall \& Tattersall, 1951; Hodge, 1963; Painter, 1966; Turner \& Heubach, 1966; Herman et al., 1968; Heubach, 1969).

Very few ecological data have been recorded on Mysids from tropical waters (Bainbridge, 1960; Ganapati \& Shyamasindari, 1959/62; Krishnamurti, 1967; Almeida Prado, 1972, in press).

Horizontal distribution - Bainbridge (1960) found Mysids mainly at stations in the central region of the estuary and scarcely registered any at the mouth of the estuary. The pattern of distribution observed by Bainbridge is the opposite of that in the Cananeia region. Ganapati \& Shyamasindari (1959/62) associate the presence of Mysids in Lawson's Bay, Waltair Coast to the incursion of Oceanic Water into the bay. These findings agree with the records obtained in the Cananeia region.

The horizontal distribution of each species collected here varied according to its tolerance to salinity and dissolved oxygen, thus, the quantitative occurrence of all species decreased in low values of salinity and dissolved oxygen. Mysidopsis tortonesi, Brasilomysis castroi have a wide distribution in the area studied; Bowmaniella (C.) brasiliensis and Promysis atlantica have a limited distribution to the entrance of the main channel and Mysidopsis coelhoi was rarely found at St. I and II.

The larger occurrences of Mysids were found in the deeper stations (St. I, III and V) where the mean depth was equal to or greater than 6 m and light penetration was 1% or less than that. A 78.00% percentage of mysids in the monthly collection was obtained at the stations mentioned above.

According to Beeton (1960) the optimum light intensity for Mysids is so low that they are concentrated near the bottom during the day. Data taken by Kutner (1972) at the same time as these mysid sampling show that 1% of light penetration was as deep as 040 cm in St. XII (Feb./70), 5 m in St. IV (Oct./69), and 6 m in St. I (Dec./69). Light penetration is markedly reduced in the Cananeia region due to
the large quantities of yellow substance (Teixeira, Tundisi, Santoro Ycaza, 1969).

The distribution of Mysids might also be controlled by the availability of food (Clutter, 1967; Ganapati \& Shyamasindari, 1959/62).

The greatest abundance of Mysids were usually found during high tide. Samples containing more than a 1000 specimens taken at St. III (Sep./69), Stations III, V and VI (Oct./69), St. III (Feb./ 70), St. I (May/70) were collected during high tide. At St. VII (Sep./69) and St. X (Oct./69) high numbers were collected during low tide. These data suggest that the horizontal migration of Mysids into the estuary follows the tidal movements.

Seasonal variation - Many studies on seasonal variation have been carried out in colder water (Hodge, 1963; Hopkins, 1965; Van der Baan \& Holthuis, 1971; Tattersall \& Tattersall, 1951; Mauchline, 1965, 1967, 1968, 1969, 1970 a, b; 1971 a, b, c, d, e; Williams, 1972).

To the author's knowledge only Bainbridge (1960), Goodbody (1965), Ganapati \& Shyamasindari (1959/62) and Almeida Prado (1972) have recorded seasonal variation of Mysids in tropical regions. Bainbridge (1960) recorded a marked variation in number of Mysids with the amplitude of the tidal cycles, samples collected at spring tides contained many Mysids and those taken at neap tides only a few juveniles. Ganapati \& Shyamasindari (1959/62) calls attention that the peak occurrence of Mysids in March coincides with the maximum zooplankton.

The maximum penetration of each species into the estuary was sucessive throughout the seasons although Mysidopsis tortonesi was the dominant species in spring, autumn and winter and Brasilomysis castroi was the dominant species in summer. Mysidopsis tortonesi, Metamysidopsis elongata atlantica were more abundant in spring, Brasilomysis castroi in summer, Bowmaniella (C.) brasiliensis in autumn and Promysis atlantica only occurred during winter.

Total number of Mysids per season:

Number of specimens	Spring	Summer	Autumn	Winter
	47.162	4.203	13.092	4.877

The maximum number of mysids was registered during spring when the mean temperature at all stations varied from $20.93^{\circ} \mathrm{C}$ (Sep./ 69) to $25.30^{\circ} \mathrm{C}$ (Nov./69) and the minimum number during summer when the mean temperature varied from $26.09^{\circ} \mathrm{C}$ (Dec./69) to $2742^{\circ} \mathrm{C}$ (Jan./70).

Vertical distribution - The vertical migration of Mysids is long known (Russell, 1927; Fage, 1932; Tattersall, 1936; Herman, 1963; Vinogradov, 1970; Ganapati \& Shyamasindari, 1959/62; MacquartMoulin, 1965; Beeton, 1960).

The results of the collection at St. HI (21-22/07/1970) show good indications of vertical migration of mysids in this area. It was observed that vertical migration was only performed by the young specimens while the adults remained close to the bottom (Table XI).

The annual rhythm of vertical migration in the area still remains unknown as the pattern of vertical distribution registered corresponds to winter time.

The values of environmental data of this collection does not go beyond the limits of tolerance found for each species in this area.

The 84 surface zooplankton samples taken from April (1970) to May (1971) during daylight show that mysids rarely move to surface layers at this time.

The results obtained from this samples are as follows:

April	- St. IV - Metamysidopsis elongata atlantica - 2 (1 male - 1 female)
June	St. I - Brasilomysis castroi - 4 (young)
	Mysidopsis tortonesi - 2 (young)
July	St. I - Mysidopsis tortonesi - 558 (young)
	Bowmaniella (C.) brasiliensis - 1 (young)
	Metamysidopsis elongata atlantica - 6 (young)
July	St. IV - Mysidopsis tortonesi - 72 (young)
	Metamysidopsis elongata atlantica - 10 (young) Brasilomysis castroi - 2 (young)

Biological cycles - According to Tattersall \& Tattersall (1951) Mysids breed only once a year in the Arctic region; in northern tem-
perate regions breeding begins at the end of winter and continues through the summer; in more southern temperate regions, breeding goes on practically all the year round, though more slowly in winter than in summer. Mauchline (1965, 1967, 1968, 1969, 1970a, b, 1971a, b, c) records continuous breeding with a period of intense reproduction in many species of British waters.

There are few records on the breeding season of Mysids in tropical regions. Goodbody (1965) registered continuous breeding of Mysidium columbiae in Kingston Harbour, Jamaica.

The co-existence, throughout the year of a population composed by a great number of young specimens and small number of adults, including gravidic females, of Mysidopsis tortonesi, Brasilomysis castroi, Metamysidopsis elongata atlantica and Bowmaniella (C.) brasiliensis indicates continuous breeding of these species in this area. Promysis atlantica occurred only in winter time, and therefore, did not provide data to determine its biological cycles. The presence of a larger quantity of adult specimens, including gravid females, rather than young of Promysis atlantica suggested that it was in period of intense breeding.

A great number of Mysids was found at St. I (May/70), St. III and V (Oct./69) and in an extra-sample taken at St. I, 04:00 p.m. (30-10-69) where two more species also occurred Metamysidopsis elongata atlantica (16,539 young, 71 adults male and 131 adults females - 34 gravidic) and Bowmaniella (C.) brasiliensis (166 young and 2 adult). These results indicate swarms of mysids, and social behaviour of this species (Clutter, 1969; Mauchline, 1971 e). The data on the occurrence of the species and its developmental stages related to environmental factors can be masked by the presence of swarms.

All species are hypopelagic. About Mysidopsis coelhoi there were not enough data to determine its habitat.

None of these species is endemic in the area. All of them are coastal water species. They had already been registered in coastal water (Tattersall, 1923; Bacescu, 1968 a, b, c; Costa, 1964), and their quantitative distribution was higher at the entrance of the estuary.

The population of Mysids is maintained in the estuary by continuous supply of specimens from coastal waters. The horizontal migration is performed through the deeper layer where the animals
follow the tidal movements. The vertical migration of the young specimens facilitates the dispersion of the species through the movements of the upper layers towards the sea or into the mangrove region.

ACKNOWLEDGEMENTS

I am indebted to Dr. J. Mauchline for critical reading of the manuscript. Thanks are due to Dr. Tagea K. S. Björnberg for valuable suggestions and criticism of this paper.

LITERATURE CITED

ALMEIDA PRADO, M. S. de (1972) - Mysidacea (Crustacea) da região Iagunar de Cananéia. Tese de doutoramento. São Paulo, Univ. S. Paulo, Inst. de Biociências.
—_ Sistemática dos Mysidacea (Crustacea) da região de Cananéia. Bolm Inst. oceanogr. S Paulo (in press).

BACESCU, M. (1968a) - Afromysis guinensis n.sp. and Brasilomysis castrov n.g.n.sp. from the waters of the tropical Atlantic. Rev. roum. Biol. Zool., 13 (2):75-86.
—_ (1968b) - Étude des quelques Leptomysini (Crustacea, Mysidacea) des eaux du Brésil et de Cuba; description d'un genre et de cinq autres taxons nouveaux. Annali Mus. civ. Stor. nat. Giacomo Doria, ry:232-249.
——_ (1968c) - Contribution to the knowledge of the Gastrosaccinae psammobionte of the tropical America, with the description of a new genus (Bowmaniella, n.g.) and three new species of its frame. Trav. Mus. Hist. nat. Gr. Antipa, 8:355-373.

BAINBRIDGE, V. (1960) - The plankton of inshore waters off Freetown, Sierra Leone. Fishery Publ. Colonial Office. Lodon, 13:1-47.

BEETON, A. M. (1960) - The vertical migration of Mysis relicta in Lake Huron and Michigan. J. Fish. Bd. Can., $17(4): 517-539$.

BRATTEGARD, T. (1969) - Marine biological investigation in the Bahamas. 10. Mysidacea from shallow water in the Bahamas and Southern Florida. Part 1 Sarsia, 39:17-106.

CLUTTER, R. I. (1967) - Zonation of nearshore Mysids. Ecology, 48(2):200208.
(1969) - The microdistribution and social behavior of some pelagic mysids shrimps. J. exp. mar. Biol. Ecol., 3:125-155.

COSTA, H. (1964) - Nota sobre os Mysidacea da costa brasileira. Bolm Mus. nac. Rio de J., n.s., Zool., (247) :1-9.

FAGE, L. (1932) - La migration vertical saizonnaière des mysidaces. C. r. hebd. Séanc. Acad. Sci. Paris, 194(3):313-31.5.

GANAPATI, P. M. \& SHYAMASINDARI, K. (1959/62) - Seasonal occurrence of mysids off Waltair Coast. First All India Congr. Zool., p. 316-320.

GOODBODY, I. (1965) - Continuous breeding in population of two tropical crustaceans, Mysidium columbiae (Zimmer) and Emerita portoricensis Schimtd. Ecology, 46(1/2):195-197.

HERMAN, S. S. (1963) - Vertical migration of the opossum shrimp Neomysis americana. Limnol. Oceanogr., 8(2):228-238.

HERMAN, S. S.; MIHURSKY, J. \& McLEON, J. (1968) - Zooplankton and environmental characteristics of the Patuxent River Estuary. Chesapeake Sci., 9(2):67-82.

HEUBACH, W. (1969) - Neomysis awatschensis in Sacramento - San Joaquin River Estuary. Limnol. Oceanogr., 14(4):533-546.

HODGE, D. (1963) - The distribution and ecology of the mysids in the Brisbane River. Pap. Dep. Zool. Univ. Qd., 2(4/5):91-104.

HOPKINS, T. L. (1965) - Mysid shrimp abundance in surface water of Indian River Inlet, Delaware. Chesapeake Sci., 6(2):86-91.

HULBURT, E. M. (1957) - The distribution of Neomysis americana in the estuary of the Delaware River. Limnol. Oceanogr., 2(1):1-11.

KATO, K. (1966) - Geochemical studies on the Mangrove region of Cananeia. Brasil. II. Physico-chemical observation on the reduction states. Bolm Inst. oceanogr. S Paulo, 15(1):21-24.

KRISHNAMURTI, K. (1967) - Seasonal variation in the plankton of Porto Novo waters (India). Hydrobiologia, 29(1/2):226-238.

KUTNER, A. S. (1962) - Granulometria dos sedimentos de fundo da região lagunar de Cananéia. Bol. Soc. Bras. Geol., 11(2):41-54.

KUTNER, M. B. B. (1972) - Variação estacional e distribuição do fitoplâncton na região de Cananéia. Tese de doutoramento. S. Paulo, Instituto de Biociências.

MACQUART-MOULIN, Cl. (1965) - Les Mysidaces bentho-planctonique du Golfe de Marseille. Rec. Trav. Stat. Mar. End. Bull., 38(54) :129-219.

MAUCHLINE, J. (1965) - Breeding and fecundity of Praunus inermis (Crustacea, Mysidacea). J. mar. biol. Ass. U. K., 45(2) :663-671.
(1967) - The biology of Schistomysis spiritus (Crustacea, Mysidacea). J. mar. biol. Ass. U. K., 47(2):383-396.
(1968) - The biology of Erythops serrata and E. elegans (Crustacea, Mysidacea). J. mar. biol. Ass. U. K., 48(2) :455-464.
(1969) The biology of Leptomysis gracilis and L. lingvura (Crustacea, Mysidacea). J. mar. biol. Ass. U. K., 49 (2) :379-389.
(1970a) - The biology of Schistomysis ornata (Crustacea, Mysidacea). J. mar. biol. Ass. U. K., 50(1) :169-175.
___ (1970b) - The biology of Mysidopsis gibbosa, M. didelphys, and M. angusta (Crustacea, Mysidacea). J. mar. biol. Ass. U. K., 50(2):381-396.
—_ (1971a) - The biology of Paramysis arenosa (Crustacea, Mysidacea). J. mar. biol. Ass. U. K., 51(2):339-345.

1971b) - The biology of Neomysis integer (Crustacea, Mysidacea). J. mar. biol. Ass. U. K., 51 (2) :347-354.
(1971c) - The biology of Praunus flexuosus and Praunus neglectus (Crustacea, Mysidacea). J. mar. biol. Ass. U. K., 51(3):641-652.
—_ (1971d) - The biology of Schistomysis kervellii (Crustacea, Mysidacea). J. mar. biol. Ass. U. K., 51(3):653-658.
—__ (1971e) - Seasonal occurrence of Mysids (Crustacea) and evidence of social behaviour. J. mar. biol. Ass. U. K., 51(4):809-825.

PAINTER, R. E. (1966) - Zooplankton of San Pablo and Suisun Bays. Fish. Bull. Calif., 133:18-39.

PERCIVAL, E. (1929) - A report on the fauna of the Estuary of the River Tamar and Lynher. J. mar. biol. Ass. U. K., n.ser., 16(1):81-108.

RUSSELL, F. S. (1927) - The vertical distribution of marine macroplankton. V . The distribution of animals caught in the ringtrawl in the daytime in the Plymouth area. J. mar. biol. Ass. U. K., n.ser., 14(3):557-608.

TATTERSALL, W. M. (1923) - Crustacea. Part VII. Mysidacea. Br. Antarct. Terra Nova Exped. 1910, Zool., 3(10) :273-304.
(1936) - The zooplankton. V. The occurrence and seasonal distribution of Mysidacea and Euphausiacea. Great Barrier Reef Expedition 1928-9, Scient. Rep. Gt Barrier Reef Exed. 2(8):277-289.

TATTERSALL, W. M. \& TATTERSALL, O. S. (1951) - The British Mysidacea. London, Ray Society, 460 p.

TEIXEIRA, C.; TUNDISI, J. \& SANTORO-YCAZA, J. (1969) - Plankton studies in a mangrove environment. VI. Primary production, zooplankton standingstock and some environmental factors. Int. Revue ges. Hidrobiol., 54(2):289301.

TURNER, J. \& HEUBACH, W. (1966) - Distribution and concentration of Neomysis awastschensis in the Sacramento - San Joaquim Delta. Fish. Bull. Calif., 133:105-112.

VAN DER BAAN, S. M. \& HOLTHUIS, L. B. (1971) - Seasonal occurrence of Mysidacea in the surface plankton of the Southern North Sea near the "Texel" lightship. Neth. J. Sea Res., 5(2):227-239.

VINOGRADOV, (1970) - Vertical distribution of the oceanic zooplankton. Jerusalem, Israel program for scientific translation, 1970, 339 p.

WIGLEY, L. \& BURNS, B. R. (1971) - Distribution and biology of mysids (Crustacea, Mysidacea) from the Atlantic coast of the United States in the NMFS Woods Hole Collection. Fishery Bull. Fish. Wildl. Ser. U. S., 69(4):717-746.

WILLIAMS, A. B. (1972) - A ten-year study of meroplankton in North Caroline Estuaries: Mysid shrimp. Chesapeake Sci., 13(4):254-262.
\because
\because
\therefore

[^0]: Número especial em homenagom ao Prof. Dr. Paulo Sawaya, no ano jubilar de sєu magistério.

