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Mechanical properties, water sorption 
characteristics, and compound release 
of grape seed extract-incorporated 
resins

Objective: This study evaluated the effect of grape seed extract (GSE) 
incorporation on the mechanical properties, water sorption, solubility, and 
GSE release from the experimental adhesive resins. Material and Methods: An 
experimental comonomer mixture, consisting of 40% Bis-GMA, 30% Bis MP, 
28% HEMA, 0.26% camphorquinone and 1% EDMAB, was used to prepare 
four GSE-incorporated adhesive resins at concentrations of 0.5, 1, 1.5, and 
2 wt%. The neat resin without GSE was used as the control. Six resin beams 
(25 mm x 2 mm x 2 mm) per group were prepared for flexural strength 
and modulus of elasticity evaluations using a universal testing machine at 
a crosshead speed of 1 mm/min. Five disks (6 mm in diameter and 2 mm 
in thickness) per group were used for microhardness measurements using 
a Leitz micro-hardness tester with Leica Qgo software. Five disks (7 mm 
in diameter and 2 mm in thickness) per group were prepared and stored 
in deionized water for 28 days. Water sorption, solubility, and GSE release 
in deionized water were calculated for each GSE-incorporated adhesive at 
the end of 28th day. Data was evaluated using one-way ANOVA and Tukey 
multiple comparisons. Results: Flexural strength, modulus of elasticity and 
microhardness of GSE-incorporated adhesive decreased significantly with 
incorporation of 1.5% of GSE (p<0.05). Addition of GSE had no effect on the 
water sorption of the adhesive resins (p=0.33). The solubility of the resin 
also increased significantly with incorporation of 1.5% of GSE (p<0.05). 
Quantities of GSE release increased with increased concentration of GSE in 
the adhesive resin. Conclusion: Up to 1% of GSE can be incorporated into 
a dental adhesive resin without interfering with the mechanical properties 
or solubility of the resins.
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Introduction

In the modern world, the use of tooth-coloured 

resin restorations has become very popular, resulting 

in an increased use of resin adhesives. However, these 

aesthetic bonded restorations are less durable than the 

traditional amalgam fillings8. The resin-dentine bonded 

interface is subjected to various mechanical forces, 

chemical or enzymatic challenges and deteriorates 

over time24. The ability of the bonded interfaces to 

resist these challenges will increase the longevity of 

the aesthetic bonded restorations27.

Several attempts have been made to increase 

the durability of bonded restorations either by 

modifying the resin or the dentine substrate30. 

Complete infiltration of the demineralized collagen 

fibrils by adhesive resins is difficult to achieve19. 

The unprotected collagen fibrils in the hybrid layer 

are exposed to enzymatic challenges by proteases 

either from exogenous or endogenous origins18. 

Various matrix metalloproteinase (MMP) inhibitors 

and collagen cross-linkers have been introduced as 

pre-conditioning agents to preserve the stability of 

the collagen and enhance long-term durability of the 

bonded interface7.

Recently, grape seed extract (GSE) has shown 

beneficial effects in the preservation of collagen fibrils. 

Grape seed extract contains mostly proanthocyanidins. 

Thus, GSE acts as a collagen cross-linker, MMP 

inhibitor, and remineralizing agent3,4,22,28. The use of 

GSE or proanthocyanidin as a pre-conditioning agent 

on dentine has improved the resin-dentine bond 

strength of both sound and caries-affected dentine1. 

The effects of proanthocyanidin on the mechanical 

properties of dentine remain high up to three months, 

but decrease after six months20. Proanthocyanidin 

from GSE has been used as a pre-conditioning agent 

in various concentrations for durations of 10 minutes 

to 1 hour1,3. The prolonged application time is clinically 

impractical; hence, proanthocyanidin in the form of 

GSE has been incorporated in an adhesive resin to 

simplify the bonding procedures and to allow for a 

sustained release of GSE in the demineralized dentine 

over time6.

Several studies have incorporated GSE or 

proanthocyanidin in the adhesive resins and have 

shown beneficial outcomes6,9. The incorporation of 

2.5% of GSE in an adhesive preserved the collagen 

matrix against collagenase stress for 6 days; by 

contrast, the collagen fibrils in the bonded interfaces 

formed by an adhesive without GSE were degraded9. 

Studies have shown that up to 2% of proanthocyanidin 

from GSE can be incorporated into experimental 

etch-and-rinse adhesives without adversely affecting 

bond strength6. Therefore, before examining the 

effect of a GSE-containing adhesive on the durability 

of resin-dentine bonds, it is necessary to examine 

whether the incorporation of GSE into the adhesive 

resin and its subsequent release affects its mechanical 

properties. Hence, this study examined the effects 

of incorporation of low concentrations of GSE on the 

mechanical properties, water sorption, solubility, and 

GSE release of an experimental adhesive resin. The 

null hypotheses tested were that GSE incorporation 

has no effect on (i) the mechanical properties of the 

adhesive resins; (ii) the water sorption and solubility 

of the adhesive resins, and (iii) the rate of GSE release 

from the cured resins.

Material and methods

Experimental resins preparation
A blend of methacrylate resin comonomers consisting 

of 40 wt% bisphenol A diglycidyl ether dimethacrylate 

(Bis-GMA), 30 wt% Bis[2-(methacryloyloxy)ethyl] 

phosphate (Bis-MP), 28.80 wt% 2-hydroxylethyl 

methacrylate (HEMA), 0.26 wt% camphorquinone, 

and 1 wt% ethyl N, N-dimenthyl-4-aminobenzoate 

(EDMAB) was used to formulate the four experimental 

GSE-incorporated adhesive resins. Grape seed extract 

(>95%, Oligomeric Proanthocyanidin, International 

Laboratory of USA, South San Francisco, CA, USA) 

was added to the neat comonomer blends at 0.5, 1, 

1.5, and 2 wt%. The neat comonomer blend without 

GSE was used as control group.

Specimen preparation for three-point bending 
test

The experimental resins from each test group 

were placed in 25 mm x 2 mm x 2 mm brass molds 

without allowing any air entrapment. The molds were 

sandwiched between two glass slabs covered with 

polyethylene films to eliminate oxygen inhibition 

layers on the cured resin surfaces. The resins were 

light-cured on both sides of the specimen with a 

quartz-halogen light curing unit (Elipar TM 2500, 3M 

ESPE, St. Paul, MN, USA) operated at 600 mW/cm2 
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for 3x40 s. After curing, the resin specimens were 

removed carefully from the mold and checked under 

a stereomicroscope for the presence of air bubbles or 

cracks. Specimens containing voids or cracks were 

discarded. The specimens were then polished with 

360-grit silicon carbide paper to smooth the rough 

edges. Six specimens were prepared from each group 

of dental adhesive resin containing 0, 0.5, 1, 1.5, 

and 2 wt% of GSE. The specimens were stored in dry 

conditions at 37°C for 24 h before testing.

Three-point bending test
Three-point bending test was performed using 

a Universal testing machine (ElectroPlusTM E 3000, 

Instron Industrial Products, Grove City, PA, USA) at 

a crosshead speed of 1.0 mm/min. A span length of 

20 mm was used. Before testing, the dimensions of 

the specimens were determined using a digital caliper 

(Mitutoyo Corp, Tokyo, Japan) to the nearest 0.01 mm. 

Load deflection curves were recorded and plotted to 

obtain the slope for linear portion of the curve. The 

maximum load and the slope of the curve were used 

to evaluate the flexural strength and the modulus of 

elasticity.

Flexural strength (FS) and Modulus of elasticity 

(MoE) were calculated using the following formulas13:

Flexural strength=3FL/2bh2

Modulus of elasticity=SL3/4bh3

F: maximum load in load deflection curve (N)

L: span between two supports (mm)

b: width of the specimen (mm)

h: height of the specimen (mm)

S: Slope of the linear portion of the load deflection 

curve

Vickers hardness test
Five samples of resin disks were prepared from 

each resin group using a brass mold of 6 mm in 

diameter and 2 mm in thickness. The top and the 

bottom of the brass mold were covered with glass 

slides and kept in a non-reflective flat surface during 

curing. The cured specimens were removed from 

the mold and aged for 24 h at 37°C dry and dark 

chamber. Leitz micro-hardness tester (Leica, Tukon 

200, Germany) with Leica Qgo software was used to 

perform the microhardness evaluation of the resin 

disks. All readings were obtained from the surface of 

the specimen. A load of 0.5 N was applied for 20 s. A 

total of 10 readings were obtained from each group 

of adhesive resin. 

Water sorption and solubility
Five disks (12 mm ± 0.1 mm in diameter and 0.7 

mm ± 0.1 mm in thickness) were prepared for each 

tested adhesive resin using a Teflon split ring mold. 

To avoid the oxygen inhibition layers, two glass slides 

covered with polyethylene films were used to seal the 

two sides of the mold. The resin was carefully placed 

into the mold avoiding any bubble formation and 

light-cured at the center of the disk for 40 s and at its 

opposite side for 40 s using a quartz-tungsten-halogen 

light-curing unit operated at 600 mW/cm2.

Each polymerized resin disk was kept in a silica 

gel-containing desiccator and weighed on an analytical 

balance (Model AD6, Perkin Elmer, Shelton, CT, USA) 

until a constant mass was obtained (M1). Each disc 

was individually stored in 5 mL of deionized water at 

37°C in a sealed container for 4 weeks. The specimen 

was taken out from the solution after 3, 12, 24, 48, 

72, 96, 120, 144, 168, 240, 288, 336, 508, and 

678 h (28 days), blot dried, mass change recorded, 

and re-immersed in the respective solution after 

measurement. The maximum mass (M2) was obtained 

during the 28-day experiment. After completing 28 

days of water storage, each specimen was placed in 

a desiccator and weighted daily until a constant mass 

(M3) was reached. The percentages of water sorption 

(WS) and solubility (S) were calculated using the 

following formulas15:

WS=M2-M1/M1

S=M1-M3/M1

Grape seed extract release
Reference solutions containing 0.1, 0.2, 0.5, 1, 2, 

5, 10, 20, 50, and 100 ppm of GSE solutions dissolved 

in deionized water were prepared to achieve a linear 

pattern between the amount of GSE and absorbance 

peak height. Maximum absorbance peak for GSE was 

confirmed as 278 nm in the UV-Vis spectrophotometer, 

which was stated in previous studies. Fifteen GSE-

incorporated resin disks were prepared as previously 

described and stored in deionized water. The diameter 

and the thickness of each specimen were measured 

using digital calipers (Mitutoyo Corp, Tokyo, Japan) 

to the nearest 0.01 mm. At appropriate time points, 

the UV absorbance (LAMBDA 950 UV/Vis/NIR 

Spectrophotometer, PerkinElmer, USA) of the deionized 

water was measured and converted to the quantities 
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of GSE released using the linear relationship obtained. 

The rate of GSE release (mg) per unit area of the 

resin disk (µm2) was calculated between consecutive 

measurements and the cumulative release (mg) per 

gram of the sample was obtained for the 28-day 

period26.

Statistical analyses
Data were analysed using a statistical package 

(SigmaStat Version 16, SPSS, Chicago,USA). 

The normality (Kolmogorov-Smirnoff test) and 

homoscedasticity assumptions (Levene test) of the 

FS, MoE, microhardness, and cumulative GSE release 

data appeared to be valid. One-way ANOVA was 

used to examine the effect of GSE concentration on 

FS, MoE, and microhardness. Two-way ANOVA was 

used to evaluate the effect of “GSE concentration” 

and “storage time” on the GSE release rate. Post-hoc 

multiple comparisons were carried out using the Tukey 

test, with significance set at p<0.05.

Results

Modulus of elasticity, flexural strength, and 
microhardness

Table 1 shows the changes of MoE, FS, and 

microhardness of the experimental resins with 

different concentrations of GSE. One-way ANOVA 

and Tukey multiple comparisons showed that “GSE 

concentration” significantly affected the FS (p=0.000), 

MoE (p=0.000), and microhardness (p=0.000) of 

the adhesive resins (p<0.001). The addition of 1.5 

GSE Conc FS (MPa) MoE (GPa) Vickers 
Hardness

0% 19.11±1.73a 0.5±0.18a 10.29±1.59a

0.5% 17.57±3.40a 0.42±0.24a 9.13±1.13a

1% 17.52±2.94a 0.48±0.13a 8.89±1.09a

1.5% 8.15±0.93b 0.12±0.02b 4.23±0.48b

2% 6.30±0.98b 0.08±0.02b 5.43±1.19b

Table 1- Flexural strength, modulus of elasticity, and Vickers 
Hardness of grape seed extract-incorporated resins

FS: Flexural Strength; MoE: Modulus of Elasticity; VH: Vickers 
Hardness
Values are expressed as means and standard deviations.
Groups identified by different superscript letters are statistically 
significant (p<0.05)

GSE Conc WS% S%

0% 9.04±1.96a 5.24±1.49a

0.5% 7.89±1.95a 5.02±0.97a

1% 8.48±1.45a 4.58±1.04a

1.5% 7.64±2.48a 9.96±2.53b

2% 8.72±2.33a 10.72±3.45b

Table 2- Water sorption and solubility of grape seed extract-
incorporated resins

WS: water sorption; S: solubility
Values are expressed as means and standard deviation.
Groups identified by different superscript letters are statistically 
significant (p<0.05)

Final rate of grape seed extract release
0.5% - 2.17 ± 0.86 µg/cm2/day
1%  - 2.24 ± 0.97 µg/cm2/day
1.5% - 2.63 ± 1.07 µg/cm2/day
2%  - 3.38 ± 1.53 µg/cm2/day

Figure 1- Rate of grape seed extract release from grape seed extract-incorporated adhesive resins over 28 days

Mechanical properties, water sorption characteristics, and compound release of grape seed extract-incorporated resins
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and 2% GSE significantly reduced the FS, MoE, and 

microhardness of the resins (p<0.001). The addition of 

lower concentrations of GSE (0.5-1%) had no effect on 

the FS (p=0.73, p=0.75), MoE (p=0.99, p=0.87), and 

microhardness (p=0.17, p=0.67) of the experimental 

resins (p>0.05).

Water sorption and solubility
Table 2 shows the mean and standard deviation of 

the water sorption and solubility of GSE-incorporated 

resins. One way ANOVA and Tukey multiple comparisons 

showed that GSE concentration had no effect on the 

water sorption of GSE-incorporated resins (p=0.33), 

but significantly affected (p=0.000) the solubility of 

the GSE-incorporated resins (p<0.001).

Proanthocyanidin release
The rates of GSE release from the GSE-incorporated 

adhesive resins are shown in Figure 1. No release of 

GSE was observed from the control resin. Two-way 

ANOVA showed that both “GSE concentration” and 

“storage time” affected (p=0.000) the GSE release 

rate (p<0.05). In general, after an initial burst of 

GSE release for 48 h, the mean release rate declined 

rapidly and reached a stable plateau after 5 days. The 

order of GSE release rate is 2%>1.5%>1%>0.5%. 

The cumulative GSE release increased with the 

concentration of GSE in the adhesive resin and was 

the highest in the 2% GSE-incorporated adhesive 

(Figure 2).

Discussion

The addition of a therapeutic material into dental 

adhesive resin can disturb its polymerization and affect 

the mechanical properties of the polymerized resin2. 

Grape seed extract is a source of proanthocyanidins 

and, during our study, we have used GSE containing 

90-95% of proanthocyanidins. Since our aim was to 

use the proanthocyanidin from GSE, we have used 

the GSE available with the highest concentration of 

proanthocyanidin for the laboratory studies. As GSE 

is a free radical scavenger, it is necessary to find an 

optimum GSE concentration for incorporation into 

dental resins, so as to maximize its cross-linking 

and protease inhibitory properties, with minimal 

adverse effects on resin polymerization properties. 

However, it was difficult to select the appropriate GSE 

concentrations, since proanthocyanidin from GSE has 

been used in previous studies at a higher concentration 

as a pre-treatment agent3. Recently, it has been shown 

that the incorporation of 2.5-10% of GSE reduced the 

degree of conversion of the adhesive resins16. Thus, 

we have incorporated a lower concentration of GSE 

(0-2%) into adhesive resin and evaluated the effects 

of GSE incorporation on the mechanical properties, 

water sorption, and solubility of the adhesive resins, 

as well as GSE release from the resin.

The flexural strength, modulus of elasticity, and 

microhardness were all adversely affected by the 

incorporation of 1.5 and 2% GSE. The first null 

hypothesis that GSE concentration had no effect on the 

mechanical properties of adhesive resin was rejected. 

GSE contains oligomeric proanthocyanidin, which is 

a plant flavonoid, belonging to the flavanol group. It 

Figure 2- Cumulative release of grape seed extract from grape seed extract-incorporated adhesive resins within 28 days
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is a known anti-oxidant, which acts as a terminator 

of free radical reactions12. Thus, GSE can inhibit the 

polymerization of the resin by deprotonating the OH 

groups in their molecules12.

Camphorquinone (CQ) and amine system were 

used in this study as the photosensitizer and 

hydrogen-donating co-initiator of the experimental 

adhesive resins10. With light curing, CQ absorbs the 

light energy and is converted to an excited unstable 

status, which extracts hydrogen atoms from the 

tertiary amine. This results in the formation of aminyl 

free radical, which initiates the chain polymerization. 

The proanthocyanidin from GSE, when involved in 

the radical polymerization, donates hydrogen atoms 

to the free radicals and inhibits the initiation and 

propagation of the chain reaction16. Even with the 

incorporation of lower concentrations of GSE into the 

adhesive resins, some disturbances to free radical 

polymerization might have occurred, as shown by 

the slight reduction in flexural strength and modulus 

of elasticity with the addition of 0.5% - 1% GSE. 

However, with the incorporation of 1.5 and 2% GSE, 

the GSE concentration reached a threshold and the 

chain polymerization was inhibited, consequently 

jeopardizing the mechanical properties of the adhesive 

resin.

The effect of GSE concentration on microhardness 

also followed a similar pattern. In general, a reduction 

of Vickers Hardness was observed with the addition of 

GSE into the adhesive resin. This reduction became 

significant when the GSE concentration was 1.5% and 

higher. Microhardness values were considered to be 

more sensitive to small changes in the polymer chain 

formation and propagation5,21. Due to the interferences 

of GSE on free radical polymerization, the hardness 

of the GSE-polymerized resin was reduced. Grape 

seed extract contains the oligomeric proanthocyanidin 

molecule and the higher molecular size can further 

interrupt chain propagation by separating the 

monomer molecules from the continuing polymer 

chain, thereby reducing the integrity of polymerized 

material2.

Moreover, the altered light intensity of the resin 

with the incorporation of higher concentrations of 

GSE may be another mechanism that affects the resin 

polymerization. The increased colour intensity with 

GSE incorporation might affect the penetration of light 

and reduce the depth of cure incrementally. It has 

been shown that different shades of composite have 

an effect on the depth of cure and eventually on the 

degree of polymerization of the resin11. Furthermore, 

GSE is mildly acidic, and the acidity of the adhesive 

resin may be increased with its addition. The formation 

of an insoluble salt with the co-initiator may occur as 

a result of increasing acidity of the resin mixture10. 

Hence, only a low concentration of GSE should be 

incorporated into the adhesive resin to avoid these 

detrimental effects on mechanical properties.

The incorporation of hydrophilic materials, such 

as GSE, can cause water-filled droplets around GSE 

molecules within the polymer resin matrix25. These 

droplets increased in size along the osmotic gradient 

between the droplets and the external solution25. 

Equilibrium is obtained when the polymer elastic and 

osmotic stresses balance each other. However, with 

the increased hydrophilicity of the adhesive resin, 

this equilibrium can be disturbed. The increased 

water sorption by the hydrophilic resin affected its 

mechanical properties, resulting in a weaker resin29. 

Thus, it is important to evaluate the water sorption of 

the adhesive resin with and without GSE.

There was no significant difference in water 

sorption between the different GSE-incorporated 

adhesive resins. However, the solubility of the GSE-

incorporated adhesive resins was adversely affected by 

the addition of 1.5 and 2% of GSE. Hence, the second 

null hypothesis that GSE incorporation had no effect 

on the water sorption and solubility of the adhesive 

resins was partially rejected. Only a low concentration 

(0-2%) of GSE was added to the adhesive resin, thus 

the water sorption of the GSE-incorporated adhesive 

resins is mainly attributed to the hydrophilicity of the 

resin itself rather than the GSE incorporated. According 

to Sideridou, et al.23 (2003), solubility depends on the 

amount of unreacted monomers trapped within the 

polymer matrix. The presence of unreacted monomers 

depends on the degree of conversion of the resin. 

Hence, a higher solubility is an indirect indication of the 

lower degree of conversion of the adhesive resin. The 

significant increase in solubility with the incorporation 

of 1.5% of GSE into adhesive resin can be interpreted 

as a sign of lower degree of polymerization of the resin.

This study aimed to examine the possibility 

of incorporation of GSE into an adhesive resin to 

enhance the biomechanical properties of the dentine 

by providing sustained release of GSE over time. 

Therefore, the quantity of GSE release from the 

GSE-incorporated adhesive resins over 28 days was 

Mechanical properties, water sorption characteristics, and compound release of grape seed extract-incorporated resins
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examined. Our results showed that incorporation of 

2% of GSE into the resins has the highest amount 

of GSE release when compared to 0.5-1.5%. Thus, 

the third null hypothesis that GSE incorporation had 

no effect on the rate of GSE release from the cured 

resins was rejected. All the tested adhesives showed 

an initial burst of GSE release in the first 24 h, and this 

was previously reported to be due to the presence of 

microvoids and surface-bound drugs14. However, the 

GSE release became stable after 5 days and remained 

static for the rest of the observation period. Being an 

oligomeric molecule, GSE release from the polymer 

matrix may be difficult. Nonetheless, the hydrophilicity 

of the resin allows bulk water movement into the resin, 

facilitating the release of water-soluble GSE17. Further 

studies are necessary to evaluate the effect of GSE 

incorporation into adhesive resin on the durability of 

the resin-dentine bond.

Conclusions

Within the limits of this study, it may be concluded 

that:

The incorporation of 0.5 to 1% grape seed extract 

into an adhesive resin had no adverse effect on its 

mechanical properties, water sorption, and solubility.

The rate of grape seed extract release increased 

with the concentration of grape seed extract 

incorporated into the adhesive resin.
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