Um caso especial de integrais binômias
DOI:
https://doi.org/10.1590/S0071-12761960000100002Resumo
The present paper shows that the sum of two binomial integrals, such as A ∫ x p (a + bx q)r dx + B ∫ x p (a + bx q)r dx, where A and B are real constants and p, q, r are rational numbers, can, in special cases, lead to elementary integrals, even if each by itself is not elementary. An example of the case considered is given by the integral ∫ x _____-___ 3 dx = 1/2 ∫ x-½ (x - 1)-⅓ dx - 6 √ x ³√(x - 1)4 = 1/3 ∫ x-½ (x - 1)-¾ dx On the rigth hand side of the last equality both integral are not elementary. But the use of integration by parts of one of them leads to the solution: ∫ x _____-___ 3 dx = x½ (x - 1)-⅓ + C. 6 √ x ³√(x - 1)4Downloads
Downloads
Publicado
1960-01-01
Edição
Seção
naodefinida
Como Citar
Nogueira, I. R. (1960). Um caso especial de integrais binômias. Anais Da Escola Superior De Agricultura Luiz De Queiroz, 17, 15-18. https://doi.org/10.1590/S0071-12761960000100002