COVID-19 shed light on Virchow’s law of thrombosis

Authors

DOI:

https://doi.org/10.4322/acr.2024.512

Keywords:

Blood vessels, COVID-19, Thrombosis

Abstract

Virchow’s law of thrombosis states that thrombosis in a vessel occurs as a combination of the following: (i) injury to the vessel wall, (ii) stasis of blood flow, and (iii) blood hypercoagulability. Injury to the wall includes infection/inflammation and/or injury to the resident cells of the wall. We postulate that in COVID-19, the SARS-CoV-2 virus directly infects the alveolar type II cell or directly or indirectly infects/injures the pericyte, promoting inflammation and interaction with endothelial cells, thereby causing a cascade of events leading to our observation that thrombosis occurred within the walls of the pulmonary vessels and not in the lumen of the vascular circulation.

Downloads

Download data is not yet available.

References

Kumar DR, Hanlin E, Glurich I, Mazza JJ, Yale SH. Virchow’s contribution to the understanding of thrombosis and cellular biology. Clin Med Res. 2010;8(3-4):168-72. http://doi.org/10.3121/cmr.2009.866. PMid:20739582.

Kushner A, West WP, Khan Suheb MZ, et al. Virchow Triad. [Updated 2022 Dec 10]. In: StatPearls Publishing. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Jun 3]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539697/

Daisley H Jr, Rampersad A, Daisley M, et al. COVID-19: a closer look at the pathology in two autopsied cases. Is the pericyte at the center of the pathological process in COVID-19? Autops Case Rep. 2021;11:e2021262. http://doi.org/10.4322/acr.2021.262. PMid:34307223.

Daisley H, Acco O, Daisley M, et al. Thrombosis of the vasa vasorum of the large and medium size pulmonary artery and vein leads to pulmonary thromboembolism in COVID-19. Autops Case Rep. 2024;14:e2024491. http://doi.org/10.4322/acr.2024.491. PMid:38803482.

Østergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol Rep. 2021;9(3):e14726. http://doi.org/10.14814/phy2.14726. PMid:33523608.

Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193-215. http://doi.org/10.1016/j.devcel.2011.07.001. PMid:21839917.

Geevarghese A, Herman IM. Pericyte-endothelial crosstalk: implications and opportunities for advanced cellular therapies. Transl Res. 2014;163(4):296-306. http://doi.org/10.1016/j.trsl.2014.01.011. PMid:24530608.

Madureira G, Soares R. The misunderstood link between SARS-CoV-2 and angiogenesis. A narrative review. Pulmonology. 2023;29(4):323-31. http://doi.org/10.1016/j.pulmoe.2021.08.004. PMid:34593362.

Yuan K, Agarwal S, Chakraborty A, et al. Lung pericytes in pulmonary vascular physiology and pathophysiology. Compr Physiol. 2021;11(3):2227-47. http://doi.org/10.1002/cphy.c200027. PMid:34190345.

McQuaid C, Montagne A. SARS-CoV-2 and vascular dysfunction: a growing role for pericytes. Cardiovasc Res. 2023;119(16):2591-3. http://doi.org/10.1093/cvr/cvac143. PMid:36063106.

Wagner DD, Frenette PS. The vessel wall and its interactions. Blood. 2008;111(11):5271-81. http://doi.org/10.1182/blood-2008-01-078204. PMid:18502843.

Valentijn KM, Sadler JE, Valentijn JA, Voorberg J, Eikenboom J. Functional architecture of Weibel-Palade bodies. Blood. 2011;117(19):5033-43. http://doi.org/10.1182/blood-2010-09-267492. PMid:21266719.

Khan AO, Reyat JS, Hill H, et al. Preferential uptake of SARS-CoV-2 by pericytes potentiates vascular damage and permeability in an organoid model of the microvasculature. Cardiovasc Res. 2022;118(15):3085-96. http://doi.org/10.1093/cvr/cvac097. PMid:35709328.

Nicosia RF, Ligresti G, Caporarello N, Akilesh S, Ribatti D. COVID-19 vasculopathy: mounting evidence for an indirect mechanism of endothelial injury. Am J Pathol. 2021;191(8):1374-84. http://doi.org/10.1016/j.ajpath.2021.05.007. PMid:34033751.

Rayner SG, Hung CF, Liles WC, Altemeier WA. Lung pericytes as mediators of inflammation. Am J Physiol Lung Cell Mol Physiol. 2023;325(1):L1-8. http://doi.org/10.1152/ajplung.00354.2022. PMid:37130806.

Butsabong T, Felippe M, Campagnolo P, Maringer K. The emerging role of perivascular cells (pericytes) in viral pathogenesis. J Gen Virol. 2021;102(8):001634. http://doi.org/10.1099/jgv.0.001634. PMid:34424156.

Duca ŞT, Costache AD, Miftode RŞ, Mitu O, Petri ŞAO, Costache II. Hypercoagulability in COVID-19: from an unknown beginning to future therapies. Med Pharm Rep. 2022;95(3):236-42. http://doi.org/10.15386/mpr-2195. PMid:36060499.

Abou-Ismail MY, Diamond A, Kapoor S, Arafah Y, Nayak L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb Res. 2020;194:101-15. http://doi.org/10.1016/j.thromres.2020.06.029. PMid:32788101.

Lasagni A, Cadamuro M, Radu CM, et al. SARS-CoV-2 induces pericyte procoagulant response associated with portal vein microthrombosis and intrapulmonary vascular dilations in fatal COVID-19. J Hepatol. 2022;77:S751. http://doi.org/10.1016/S0168-8278(22)01819-0.

Kangro K, Wolberg AS, Flick MJ. Fibrinogen, fibrin, and fibrin degradation products in COVID-19. Curr Drug Targets. 2022;23(17):1593-602. http://doi.org/10.2174/1389450123666220826162900. PMid:36029073.

Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7(8):e575-82. http://doi.org/10.1016/S2352-3026(20)30216-7. PMid:32619411.

Bastin A, Abbasi F, Roustaei N, et al. Severity of oxidative stress as a hallmark in COVID-19 patients. Eur J Med Res. 2023;28(1):558. http://doi.org/10.1186/s40001-023-01401-2. PMid:38049886.

Vollbracht C, Kraft K. Oxidative stress and hyper-inflammation as major drivers of severe COVID-19 and long COVID: implications for the benefit of high-dose intravenous vitamin C. Front Pharmacol. 2022;13:899198. http://doi.org/10.3389/fphar.2022.899198. PMid:35571085.

Andreeva ER, Pugach IM, Gordon D, Orekhov AN. Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell. 1998;30(1):127-35. http://doi.org/10.1016/S0040-8166(98)80014-1. PMid:9569686.

Juchem G, Weiss DR, Gansera B, Kemkes BM, Mueller-Hoecker J, Nees S. Pericytes in the macrovascular intima: possible physiological and pathogenetic impact. Am J Physiol Heart Circ Physiol. 2010;298(3):H754-70. http://doi.org/10.1152/ajpheart.00343.2009. PMid:20023125.

Mazurek R, Dave JM, Chandran RR, Misra A, Sheikh AQ, Greif DM. Vascular cells in blood vessel wall development and disease. Adv Pharmacol. 2017;78:323-50. http://doi.org/10.1016/bs.apha.2016.08.001. PMid:28212800.

Billaud M, Donnenberg VS, Ellis BW, et al. Classification and functional characterization of vasa vasorum-associated perivascular progenitor cells in human aorta. Stem Cell Reports. 2017;9(1):292-303. http://doi.org/10.1016/j.stemcr.2017.04.028. PMid:28552602.

Dore-Duffy P, Cleary K. Morphology, and properties of pericytes. Methods Mol Biol. 2011;686:49-68. http://doi.org/10.1007/978-1-60761-938-3_2. PMid:21082366.

Ahmed TA, El-Badri N. Pericytes: the role of multipotent stem cells in vascular maintenance and regenerative Medicine. Adv Exp Med Biol. 2018;1079:69-86. http://doi.org/10.1007/5584_2017_138. PMid:29282647.

Brotman DJ, Deitcher SR, Lip GY, Matzdorff AC. Virchow’s triad revisited. South Med J. 2004;97(2):213-4. http://doi.org/10.1097/01.SMJ.0000105663.01648.25. PMid:14982286.

Li P, Fan H. Pericyte loss in diseases. Cells. 2023;12(15):1931. http://doi.org/10.3390/cells12151931. PMid:37566011.

Cardot-Leccia N, Hubiche T, Dellamonica J, Burel-Vandenbos F, Passeron T. Pericyte alteration sheds light on micro-vasculopathy in COVID-19 infection. Intensive Care Med. 2020;46(9):1777-8. http://doi.org/10.1007/s00134-020-06147-7. PMid:32533198.

Muhl L, He L, Sun Y, et al. The SARS-CoV-2 receptor ACE2 is expressed in mouse pericytes but not endothelial cells: implications for COVID-19 vascular research. Stem Cell Reports. 2022;17(5):1089-104. http://doi.org/10.1016/j.stemcr.2022.03.016. PMid:35452595.

Wang P, Luo R, Zhang M, et al. A cross-talk between epithelium and endothelium mediates human alveolar-capillary injury during SARS-CoV-2 infection. Cell Death Dis. 2020;11(12):1042. http://doi.org/10.1038/s41419-020-03252-9. PMid:33293527.

Perico L, Morigi M, Pezzotta A, et al. SARS-CoV-2 spike protein induces lung endothelial cell dysfunction and thrombo-inflammation depending on the C3a/C3a receptor signalling. Sci Rep. 2023;13(1):11392. http://doi.org/10.1038/s41598-023-38382-5. PMid:37452090.

Downloads

Published

2024-08-28

Issue

Section

Short Communication

How to Cite

Daisley, H., Acco, O., Daisley, M., George, D., Paul, L., Rampersad, A., & Daisley, J. (2024). COVID-19 shed light on Virchow’s law of thrombosis. Autopsy and Case Reports, 14, e2024512. https://doi.org/10.4322/acr.2024.512