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The importance of B cells in the development of preventive and therapeutical 
approaches against Dengue, Zika and Chikungunya viral infections

Among the deadliest animals on the planet, mosquitoes occupy the number 1 in the ranking. They 

are capable of transmitting several diseases caused by parasitic, bacterial or viral pathogens. The prevalence 

of mosquito borne-diseases is higher in tropical areas where high humidity and temperature as well as un-

planned urbanization are found. In the context of viral diseases, a particular mosquito vector, Aedes aegypti, 

has been in the spotlight. It transmits Yellow Fever (YFV), Dengue (DENV), Zika (ZIKV) (all Flaviviruses) 

and Chikungunya (CHIKV) viruses (alphavirus) to humans. Recently, DENV, ZIKV and CHIKV infection 

outbreaks have been detected simultaneously in the same locations, such as French Polynesia (Musso et 

al., 2015) or Brazil (Brazilian Ministry of Health, 2016 -http://portalsaude.saude.gov.br/images/pdf/2016/

maio/17/2016-016---Dengue-SE16-publica----o.pdf), raising global concerns. There is evidence that ZIKV 

transmission occurs through mosquito bite, blood or sexual contact (Foy et al., 2011; Musso et al., 2015; 

McCarthy, 2016). Generally, its symptoms are mild and similar to DENV and CHIKV infections. Neverthe-

less, some ZIKV-infected patients showed development of neurological alterations such as Guillain-Barré 

syndrome (Brasil et al., 2016), microcephaly, macula atrophy and others (Li et al., 2016; Mlakar et al., 2016; 

Ventura et al., 2016; Cugola et al., 2016; Garcez et al., 2016). Currently, Brazil is a major hotspot for DENV, 

ZIKV and CHIKV infections, which have been detected in almost all regions of the country (Cardoso et al., 

2016). Unfortunately, Brazilians have struggled with government slow actions in response to those epidemics. 

Consequently, it delays their diagnostics and the start of a treatment, raising awareness that those viral infec-

tions may spread out quickly in the Americas and other parts of the world where Aedes mosquitoes reside. 

Regarding the immune responses against those three viral infections, they usually induce antibod-

ies with neutralizing abilities (Dejnirattisai et al., 2015; Clapham et al., 2016; Dai et al., 2016; Smith et al., 

2015). However, DENV-specific responses are more complex because there are four different viral serotypes 

and the antibody response induced by one serotype does not protect against the other (reviewed by White-

head et al., 2007). Instead of virus neutralization, the elicited process is antibody-dependent enhancement of 

infection (ADE) on Fc receptor-bearing cells (Dejnirattisai et al., 2010). Considering that ZIKV has about 

43% identity with the DENV polyprotein or the envelope ectodomain (Lazear, Diamond, 2016), it requests 

further analyses whether ZIKV-specific antibodies derived from a previous infection can induce DENV 

ADE. Apparently, DENV-specific antibodies not only bind ZIKV, but also trigger ZIKV ADE (Cardoso et 

al., 2015). Interestingly, most of the confirmed ZIKV infection cases in the Brazilian Northeast states were 

of DENV-exposed individuals. 
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In terms of antibody-secreting cell responses, there is a massive antigen-specific plasmablast re-

sponse during the acute phase of DENV infection, accounting for more than 50% of all IgG-secreting cells 

(Wrammert et al., 2012; Garcia-Bates et al., 2013). Similarly, an Asian ZIKV strain elicited an increased 

plasmablast frequency seven days after challenge in rhesus macaques. However, that evaluation did not verify 

what percentage of cells was antigen-specific (Dudley et al., 2016). On the other hand, there is not much data 

available about the plasmablast response in the context of CHIKV infection, but only antibody titers and their 

neutralisation capacities in the serum (Yoon et al., 2015).

Although the YFV-specific vaccine (YF-17D strain) is one of the most effective formulations developed 

so far, there are no protective vaccines against the other viruses transmitted by Aedes aegypti. Recombinant 

YF-17D constructs containing genes from different pathogens have been able to elicit substantial degrees of 

protection (Tao et al., 2005; Guy et al., 2010; Nogueira et al., 2011). DENV-specific YF-17D vectors were 

already made (Guy et al., 2010, 2011) and recently tested in clinical trials (Capeding et al., 2014; Villar et al., 

2015). That type of recombinant construct greatly stimulates T cell and humoral responses (Monath et al., 

2003; reviewed by Guy et al., 2010). Considering the pivotal role of antibodies in preventing viral infections 

post-vaccination as well as therapeutic tools (Caskey et al., 2015; Fibriansah, Lok, 2016; Pal et al., 2013), it 

is crucial that any vaccine candidates for DENV, ZIKV and CHIKV infections are able to promote extensive 

B cell responses. To study vaccine- or viral infection-derived B cell responses, different cell subsets could be 

assessed, such as memory B cells or plasmablasts. Although both cell types have been successfully used to 

produce antigen-specific monoclonal antibodies (mAbs) with neutralizing abilities, plasmablasts at the peak 

of response represent a more accessible source of material to produce antigen-specific mAbs (reviewed by 

Silveira et al., 2015). The knowledge of vaccine- or viral infection-derived mAb repertoire and their functional 

characteristics would certainly improve the development of preventive and therapeutic approaches against 

DENV (Silveira, 2015), ZIKV or CHIKV infections. 
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