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The human skin aging process is a complex mechanism that can be induced both by intrinsic and extrinsic 
factors. Observations include a decrease in the biosynthetic and proliferative capacity of cells, increased 
expression of matrix metalloproteinases, reduction in collagen type I expression, and the progressive 
disappearance of elastic tissue in the papillary dermis. L-arginine, the substrate of nitric oxide synthesis, 
is involved in angiogenesis and cell proliferation, as well as an indirect precursor of collagen synthesis 
via the proline pathway. The aim of this study was to examine the tensile strength, histology, and 
immunohistochemistry of female and male mice skin receiving different concentrations of topically 
applied L-arginine, in order to evaluate the possibility of using L-arginine as an active cosmetic ingredient 
in antiaging products. The results suggest that the application of L-arginine improves the mechanical 
resistance of skin from older female mice (20 weeks old) and promotes the formation of a larger amount 
of collagen and elastic fibers in the skin when applied at a concentration of 15%.
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INTRODUCTION

Like all organs, skin undergoes chronological 
aging, but unlike others, it is in direct contact with the 
environment, and therefore further ages as a result of 
environmental damage (Fisher et al., 2002; Pageon et al., 
2007; Hwang, Yi, Choi, 2011; Levakov et al., 2012). The 
aging of human skin is a complex process, induced by 
both intrinsic factors resulting from tissue degeneration 
that are largely genetically determined, and by extrinsic 
factors caused by environmental exposure, predominantly 
including ultraviolet radiation, smoking, excessive alcohol 
drinking, and malnutrition. Among the external factors, 
sun exposure is considered the most harmful to skin 
(Naylor, Watson, Sherratt, 2011; Jenkins, 2002; Baumann, 
2007; Levakov et al., 2012; El-Domyati, Medhat, 2015; 
Kammeyer, Luiten, 2015).

In intrinsic or chronological aging, changes in the 
skin are similar to those that occur in most of the internal 
organs. The changes occur partly because of endogenous 
injury accumulation due to the continuous formation 

of reactive oxygen species (ROS), which are generated 
by cellular oxidative metabolism (Jenkins, 2002; Tobin, 
2017). Although the stratum corneum remains relatively 
unchanged throughout the aging process, the epidermis 
and dermis undergo a flattening of the dermal-epidermal 
junctions and a reduction in the proliferative and 
biosynthetic capability of skin cells, especially fibroblasts. 
This results in a decrease in the dermal matrix production 
and increased expression of matrix metalloproteinases 
(MMPs) (Jenkins, 2002; Oriá et al., 2003; Langton et al., 
2010; Levakov et al., 2012; Tobin, 2017).

The main molecular components involved in 
the skin aging process are collagen, elastic fibers, and 
glycosaminoglycans. Among them, collagen is the most 
abundant extracellular component in skin that imparts 
the dermis tensile properties (Naylor, Watson, Sherratt, 
2011; Jenkins, 2002). Collagen molecules are initially 
synthesized as a precursor, procollagen, that is post-
translationally hydroxylated by prolyl hydroxylase, 
generating hydroxyproline residues that are required 
for the formation of collagen. Together, hydroxyproline 
and proline residues correspond to 23% of the collagen 
molecule (Bellon et al., 1987; Barbul, 2008; Wu et al., 
2011; Pokidysheva et al., 2013). Proline used for collagen 
biosynthesis in fibroblasts may be derived from glutamine, 
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glutamate, ornithine, or arginine (Wu et al., 2011).
Previous studies have detailed the relationship 

between arginine, collagen synthesis, and deposition of 
collagen in wound-healing processes (Albina, Abate, 
Mastrofrancesco, 1993; Soneja, Drews, Malinski, 2005). 
Specifically, research has demonstrated that the proline 
pool size determines the rate of collagen synthesis, and the 
local synthesis of proline from their metabolic precursors, 
such as ornithine, arginine, glutamate and glutamine, 
is strengthened in some circumstances, apparently to 
compensate for a relative deficiency in preformed proline 
residues (Barbul, 2008).

L-arginine is a substrate for nitric oxide synthesis; 
therefore, it is indirectly involved in many important 
regulatory mechanisms, such as cell proliferation and 
angiogenesis (Shi et al., 2003; Durante, 2013). L-arginine is 
metabolized by nitric oxide synthase (NOS) to nitric oxide 
(NO) and L-citrulline, or is metabolized to urea and ornithine 
by arginase-1 in the liver urea cycle. Ornithine, through 
the action of ornithine-γ-aminotransferase is converted 
to pyrroline-5-carboxylate, that is then metabolized to 
L-proline by pyrroline-5-carboxylate reductase. L-proline 
is required for the synthesis of many structural proteins, 
including collagen (Barbul, 2008; Durante, 2013).

Arginase-1 has been assumed to participate in 
wound-healing processes because it affects local cell 
proliferation and possibly collagen metabolism (Shi et 
al., 2003). Arginine supplementation in the diet of humans 
and rodents has a significant effect on the wound-healing 
process. Rats treated with L-arginine display increased 
tensile strength of scar skin and higher collagen deposition 
in comparison with controls (Seifter et al., 1978 apud 
Soneja, Drews, Malinski, 2005). 

Therefore, the objective of this work was to assess 
the effect of the topical administration of L-arginine on 
female and male mouse skin elasticity to evaluate the 
possibility of its use as a cosmetic active ingredient.

MATERIAL AND METHODS

In vivo efficacy of L-arginine in improving mouse 
skin elasticity 

To assess the effect of L-arginine on skin elasticity, 
Swiss female and male mice weighing between 20 and 
25 g each were grouped according to age and sex. Group 
1 comprised of female mice at 4–6 weeks old; group 2, 
female mice at 11–13 weeks old; group 3, female mice at 
20 weeks old; group 4, male mice at 4–6 weeks old; group 
5, male mice at 11–13 weeks old; and group 6, male mice 
at 20 weeks old. The mice groups were housed in plastic 

cages under controlled light (12 h light/dark cycle) and 
temperature (25 °C) conditions with water and food ad 
libitum. To evaluate the in vivo efficacy of L-arginine 
in improving skin elasticity, the mice received a topical 
application of 0.5 g of L-arginine dispersed in glycerol 
at different concentrations, or glycerol only (vehicle 
control group, Glyc.) for 15 days, or received no treatment 
(control group, CTRL). After the treatment period, the 
mice were euthanized in a carbon dioxide chamber. The 
abdominal skin of the mice was then shaved and samples 
of approximately 3 cm were removed. The fragments of 
removed tissue were either fixed in buffered formalin and 
processed for histological evaluation or used immediately 
to evaluate skin elasticity. All animal procedures were 
performed according to the rules of CONCEA (The 
Brazilian National Council for the Control of Animal 
Experimentation) and carried out under the approval of 
the Ethics Committee on Animal Use at the University of 
Brasilia (process number: 47217/2009). All efforts were 
made to minimize animal suffering.

Skin elasticity evaluation

The tissue samples that were removed from the 
mice were kept moist by the addition of saline solution. 
Skin elasticity was evaluated by measuring tensile 
strength using VersaTest® equipment coupled with a 
dynamometer. Skin samples were stretched until rupture 
and the maximum traction force tolerated by the tissue 
was determined.

Histological and immunohistochemical evaluation

Skin fragments from treated mice were immersed 
in 10% formaldehyde for 48 h, followed by use in 
routine histological procedures for paraffin embedding. 
Histological cross sections were made through the major 
axis of the skin fragments. Staining techniques used 
include hematoxylin and eosin (H&E) staining for the 
morphological analysis of tissue, Masson’s trichrome 
staining for the analysis of collagen fibers (Hotchkiss, 
1948), and Verhoeff’s staining for the observation of elastic 
fibers (Verhoeff, 1908). The sections were examined 
by light microscopy and analyses were based on the 
histological characteristics of the tissue in comparison 
with the control group. 

Tissue sections were also immunohistochemically 
stained using the immunoperoxidase technique in order to 
analyze inducible NOS (iNOS) expression, as described 
in the Spring Bioscience and Biogen protocol. The 
polyclonal antibody rabbit anti-iNOS (Spring Bioscience, 
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code E3740), was diluted in antibody diluent (Spring 
Bioscience, code ADS-125) at ratio of 1:100. The polymer 
used was Histofine® (Nichirei, Cod. 414341F) and the 
chromogen substrate was 3,3’-diaminobenzidine (DAB; 
Spring Bioscience, code DAB-125). Mice lung sections 
were used for positive and negative controls. For negative 
control staining, all steps were carried out except for the 
application of the primary antibody. 

The results were expressed as the staining intensity 
scored with a semiquantitative ordinal scale (0–30%, 30-
70%, and 70-100%) according to analyses by three blinded 
observers, and the mean was used as the final score.

Statistical Analyses

The obtained results were statistically analyzed by a 
variance test (one-way ANOVA) followed by Bonferroni, 
Dunnett, or Tukey multiple comparisons tests.

RESULTS 

Skin elasticity evaluation

Skin samples were evaluated from mice that 
were treated with different concentrations of L-arginine 

suspended in glycerol, and with glycerol only (Glyc.) 
or that received no treatment (CTRL) to determine the 
skin’s resistance to mechanical force using the VersaTest® 
equipment coupled to a dynamometer (Figure 1 and 2). 

Figure 1 (A to C) presents the results obtained for 
the evaluation of the mechanical tensile strength of skin 
from female mice of different ages treated with different 
concentrations of L-arginine. For mice from group 3 
(Figure 1C), treatment with L-arginine at any of the tested 
concentrations resulted in a significant increase in the 
tensile strength needed to disrupt the skin. For mice from 
group 2 (Figure 1B), a significant difference was observed 
between the control group and the group treated with 
L-arginine at 10% that showed an increase in elasticity. 
The mechanical resistance of skin samples from group 1 
mice (Figure 1A) was significantly lower in the control 
group than in skin from all other groups that were treated 
with L-arginine or with the vehicle control. Generally, 
across all groups, there was a trend towards increased 
mechanical tensile strength of skin treated with L-arginine 
at 5% in comparison with controls, and decreased tensile 
strength for higher concentrations of L-arginine.

Figure 2 shows the results obtained for the treatment 
of male mice. A significant difference in the tensile force 
required to rupture the skin of older male mice treated with 

FIGURE 1 - Evaluation of the mechanical tensile strength of female mouse skin. (A) Group 1, (B) group 2, and (C) group 3. The 
mice were treated with glycerol only (Glyc.), dispersions of L-arginine in glycerol at 5% (Arg. 5%), 10% (Arg.10%), or 15% (Arg. 
15%), or received no treatment (CTRL). P < 0.05; * versus CTRL; (3 ≤ n ≤ 5).

FIGURE 2 - Evaluation of the mechanical tensile strength of male mice skin. (A) Group 4, (B) group 5, and (C) group 6. The mice 
were treated with glycerol only (Glyc.), dispersions of L-arginine in glycerol at 5% (Arg. 5%), 10% (Arg.10%), or 15% (Arg. 
15%), or received no treatment (CTRL). P < 0.05; * versus CTRL, # versus Glyc.; (3 ≤ n ≤ 5).
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L-arginine was observed for all concentrations (Figure 
2C). Skin of male mice at 11–13 weeks old displayed no 
significant difference following treatment (Figure 2B). The 
experiments performed on the younger male mice revealed 
that the skin strength of untreated were significantly 
greater than the skin strength of vehicle control group 
mice, and significantly lower in the mice of the vehicle 
group than the groups treated with L-arginine dispersions 
at concentrations of 10% or 15% (Figure 2A).

Histological evaluation

Evaluation of collagen fibers
The skin samples underwent routine histological 

examination and were stained by the Masson’s trichrome 
method to observe collagen fibers. Results were expressed 
as the staining intensity of fibers scored by three blinded 
observers, and the mean values for female and male mice 
are listed in Table I and II, respectively.

Table I shows the results for collagen staining of 
female mouse skin by the Masson´s trichrome method. For 
older mice, L-arginine treatment at higher concentrations 
produced the best results in comparison with controls, 
while for younger mice, lower concentrations of 
L-arginine produced results similar to those for higher 
concentrations. For male mice (Table II), L-arginine 

treatment did not stimulate an increase in collagen fiber 
abundance. A selection of the photomicrographs that 
illustrate the analysis are shown in Figures 3 and 4. 

Assessment of elastic fibers
Skin samples were stained by the Verhoeff 

method for the evaluation of elastic fibers. The obtained 
photomicrographs were analyzed by counting the fibers in 
three distinct and random fields of a checkerboard lattice 
with an area of 0.01 mm2 shared into 100 equal parts 
(Figure 5). For older mice, the treatment with L-arginine at 
15% resulted in an increase in the amount of elastic fibers 
in comparison with controls that received the glycerol 
vehicle only. For younger mice, the treatment did not 
stimulate any increase in the amount of elastic fibers. The 
photomicrographs illustrate the difference in the amount 
of elastic fibers in the skin of younger and older mice, as 
well as between older control and 15% L-arginine treated 
mice (Figure 5). 

The difference in the amount of elastic fibers 
observed among mice of different ages that was observed 
in female mice was not observed in male mice (Figure 6). 
Nonetheless, the L-arginine treatment of male mice 11–13 
weeks old was effective in stimulating the production of 
elastic fibers. 

Figure 7 depicts the difference in the amount of 
elastic fibers in untreated skin from male and female 

TABLE I - Evaluation of collagen fibers stained in female mouse 
skin

Group Staining intensity

Group 1

CTRL S > 70%
Glycerol 30% < S < 70%
Arg. 5% S > 70%
Arg. 10% 30% < S < 70%
Arg. 15% S > 70%

Group 2

CTRL 0 < S < 30%
Glycerol 30% < S < 70%
Arg. 5% 30% < S < 70%
Arg. 10% S > 70%
Arg. 15% 0 < S < 30%

Group 3

CTRL 30% < S < 70%
Glycerol S > 70%
Arg. 5% 30% < S < 70%
Arg. 10% 30% < S < 70%
Arg. 15% S > 70%

The semiquantitative analysis of collagen fibers was performed 
by three blinded observers. S, mean score of staining.

TABLE II - Evaluation of collagen fibers stained in male mouse 
skin

Group Staining intensity

Group 4

CTRL 0 < S < 30%
Glycerol S > 70%
Arg. 5% 0 < S < 30%
Arg. 10% 0 < S < 30%
Arg. 15% S > 70%

Group 5

CTRL S > 70%
Glycerol 0 < S< 30%
Arg. 5% S > 70%
Arg. 10% S > 70%
Arg. 15% S > 70%

Group 6

CTRL S > 70%
Glycerol S > 70%
Arg. 5% 0< S< 30%
Arg. 10% 0 < S < 30%
Arg. 15% 0 < S < 30%

The semiquantitative analysis of collagen fibers was performed 
by three blinded observers. S, mean score of staining.
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mice with age. For female control mice, the amount of 
elastic fibers decreases significantly with aging. This is 
in contrast with males that maintain a relatively uniform 
amount of elastic fiber across age groups, despite 
generally having less elastic fiber in the skin samples 
than the female mice.

Immunohistochemical detection of iNOS

The fragments of mouse skin were processed for 
histological analysis by immunohistochemical staining 
specific for iNOS detection. Results are expressed as the 
intensity and distribution of iNOS staining for female 
(Table III) and male (Table IV) mice.

The mouse skin samples from group 3 stained 
positive for iNOS, with staining intensity greater than 
30% in the skin appendages for all treatments, including 
controls (Figure 8A, B, C). A slight positive staining for 

iNOS in the epidermis was only observed in CTRL group 
mice and those treated with L-arginine at 5% (Figure 8A, 
B). In group 2, only the skin of female mice that received 
treatment with L-arginine showed positive staining for 
iNOS. For group 1, female mice that received treatment 
with 5% L-arginine dispersion did not show iNOS staining 
in the skin.

For male mice, iNOS was not observed in most of 
the tissue processed by immunohistochemical detection 
except for in younger mice (group 4). More iNOS was 
expressed in the skin of older mice treated with 15% 
L-arginine (group 6) and in the skin of younger animals 
treated with 10% L-arginine (group 4, Table IV). Figure 9 
illustrates the photomicrograph of skin from 4–6-week-old 
mice treated with L-arginine at 10%.

DISCUSSION

With increasing life expectancy, modern women 
can spend more than a third of life in the post-menopausal 
period. During this period, hormonal changes, such as 
the loss of estrogen production, accelerate changes in the 
collagen and elastic fibers in skin, resulting in increased 
wrinkling and sagging after menopause. Research has 
shown that approximately 30% of collagen is lost in the 
first 5 years of this period, and that the rate of collagen 
loss is 2.1% per year after menopause (Son et al., 2005, 
Phuong, Maibach, 2015).

Several substances have been tested to assess 
their contribution to delaying the skin aging process, by 
various mechanisms, such as scavenging of ROS and 
restoration of the redox balance (Hwang, 2010), inhibiting 
the expression or activity of MMP (Valenti et al., 2011), 
increasing the expression or regulation of tissue inhibitor 
of metalloproteinases (TIMP) (Landau, 2007), inhibition 
of elastosis (Langton et al., 2010), or simply by protecting 
against ultraviolet (UV) radiation that promotes the 

FIGURE 3 - Photomicrographs of skin stained with Masson’s trichrome to observe collagen fibers (x100, details x400). (A) Female 
mouse skin from group 3 treated with vehicle and (B) female mouse skin from group 2 treated with L-arginine 10%. 

FIGURE 4 - Photomicrograph of male mouse skin from group 
6 (CTRL) stained with Masson’s trichrome to observe collagen 
fibers (x100, detail x400).
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FIGURE 5 - Quantitative analysis of elastic fibers in female mouse skin. Mice from group 1 (A), group 2 (B), and group 3 (C) were 
treated with vehicle (Glyc.), L-arginine at 5% (Arg. 5%), 10% (Arg. 10%), or 15% (Arg. 15%), or did not receive any treatment 
(CTRL). P < 0.05, * versus CTRL, # versus Glyc.; (3 ≤ n ≤ 5). (D–F) show the photomicrographs (x400) of the skin sections 
stained for evidence of elastic fibers using the Verhoeff method: (D), mice from group 3, CTRL; (E), mice from group 3 treated 
with L-arginine at 15%; and (F), mice from group 1 treated with L-arginine at 10%.

FIGURE 6 - Quantitative analysis of elastic fibers in male mouse skin. Mice from group 4 (A), group 5 (B), and group 6 (C) were 
treated with vehicle (Glyc.), L-arginine at 5% (Arg. 5%), 10% (Arg. 10%), or 15% (Arg. 15%), or did not receive any treatment 
(CTRL). P < 0.05, * versus CTRL, # versus Glyc.; (3 ≤ n ≤ 5).

formation of ROS and triggers many of these processes 
that are responsible for aging (Choe et al., 2003).

As already mentioned, Seifter and collaborators 
(Soneja, Drews, Malinski, 2005) described an increase 
in tensile strength from scar and collagen deposition in 
the healing process in rats fed the arginine-supplemented 
diet when compared with that in the control group, fed 
the arginine-free diet. In the present study, an increased 
resistance of the skin to traction force found when 
L-arginine dispersions were topically administered in not 
only groups 2 and 3 mice, but also in group 1. Collagen 
fiber analysis revealed an increase in the amount of fibers 
in the skin of mice from groups that received treatment 

with higher concentrations of L-arginine in comparison 
with that at lower concentrations. Estrogen deficiency may 
be responsible for skin aging at the start of the infertile 
period, since it affects the loss of collagen and skin water 
content (Calleja-Agius, Brincat, 2009; Phuong, Maibach, 
2015), and it could explain the observed decrease in 
traction resistance and collagen in the skin of the older 
group of female mice (group 3). Once L-arginine is 
metabolized in the urea cycle, yielding ornithine that is 
used for proline production, which in turn is used for 
fibroblast collagen synthesis (Barbul, 2008), the amino 
acid may be contributing to the increase of elasticity and 
the amount of collagen fibers in the skin of treated mice.
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The histological sections of skin stained with 
Masson’s trichrome for collagen analysis revealed that 
the male mice from the CTRL group presented more 
collagen fibers in the skin than the female mice from the 
CTRL group. This feature was observed for all age groups, 
except for the youngest mice that had a high intensity of 

collagen fiber staining in the skin for both male and female 
mice. This age-dependent difference observed in the skin 
of females may be explained by estrogen deficiency that 
is characteristic of the final phases of childbearing age.

L-arginine can also be metabolized in the nitric 
oxide synthase cycle resulting in NO production. Some 
studies have shown that NO induces both expression 
and activation of MMP-1 in chondrocyte cultures, as 
well as induces MMP-1 and MMP-2 expression and 
activity in fibroblasts (Lin et al., 2003; Choe et al., 2003). 
Therefore, iNOS expression in mouse skin was evaluated 
by immunohistochemistry and the results show an 
agreement with this supposition, as the skin from group 1 
mice treated with vehicle or 10% L-arginine had a lower 
amount of collagen fibers than skin treated with 15% 
L-arginine, which also did not exhibit iNOS expression 
in the epithelium or showed very little iNOS expression 
in the connective tissue. It is reasonable to assume that 
10% L-arginine could induce NO production that leads 
to the induction of collagenase expression. Although 
several studies indicate that the synthesis of collagen 
can be inhibited by NO in several types of cells, such as 
arteriole, vascular smooth muscle, and mesothelial cells 
(Chatziantoniou et al., 1998; Myers, Tanner, 1998; Owens, 
Milligan, Grisham, 1996), other studies have shown that 
NO induces collagen synthesis in fibroblasts in the lamina 

FIGURE 7 - Amount of elastic fibers in the skin of male and 
female mice.  The mice did not receive any kind of treatment 
(CTRL). Elastic fibers were counted in three distinct and random 
fields of a checkerboard lattice with an area of 0.01 mm2 shared 
into 100 equal parts. *, #, and &, indicate a significant difference 
between flagged groups, P < 0,05; n = 3.

TABLE III - Immunohistochemical iNOS staining of female mouse skin

Group Epithelium Cutaneous annexes Connective tissue 

Group 1

CTRL 0 < IS < 30%, U 30% < IS < 70%, U 30% < IS < 70%, U
Glycerol 0 < IS < 30%, D 0 < IS < 30%, D -
Arg. 5% - - -
Arg.10% IS > 70%, U 30% < IS < 70%, U IS > 70%, U
Arg.15% - 0 < IS < 30%, D 0 < IS < 30%, D

Group 2

CTRL - - -
Glycerol - - -
Arg. 5% * *  *
Arg.10% 30% < IS < 70%, U 0 < IS < 30%, U 0 < IS < 30%, D
Arg.15% 30% < IS < 70%, U 30% < IS < 70%, U 0 < IS < 30%, D

Group 3

CTRL 0 < IS < 30%, D 30% < IS < 70%, U 30% < IS < 70%, D
Glycerol - 30% < IS < 70%, U -
Arg. 5% 30% < IS < 70%, U 30% < IS < 70%, U 0 < IS < 30%, D
Arg.10% - 30% < IS < 70%, U -
Arg.15% - 30% < IS < 70%, U -

The intensity and distribution of marked iNOS in epithelial skin, cutaneous annexes, and connective tissue are listed. The values 
are the average of semiquantitative analyses made by three blinded observers. IS, immunohistochemical staining; -, absence of 
staining; *, insufficient material for analysis. The staining distribution was classified as diffuse (D), focused (F), or uniform (U).
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propria of the small intestine (Chakravortty, Kumar, 1997) 
and in the re-epithelialization of normal skin as part of 
the healing processes (Stallmeyer et al., 1999; Hsu et al., 
2006).

Witte and coworkers (2000) revealed that although 
the NO donor used in the study presented a cytostatic effect 
on fibroblasts, the administration of low concentrations 
of NO donor in rat dermal fibroblast cultures enhanced 

collagen synthesis. The authors suggested that NO 
upregulates collagen synthesis in dermal fibroblasts 
without affecting collagen breakdown activity, acting by 
a posttranslational mechanism. L-arginine is a substrate 
either for arginase or for nitric oxide synthase. Arginase 
expression regulates arginine bioavailability for NO 
synthesis (Gobert et al., 2000; Kavalukas et al., 2012), 
and despite the Vmax of arginase for arginine exceeding that 

TABLE IV - Immunohistochemical iNOS staining of male mouse skin

Group Epithelium Cutaneous annexes Connective tissue 

Group 4

CTRL 0 < IS < 30%, D 30% < IS < 70%, U IS > 70%, U
Glycerol 0 < IS < 30%, D 0 < IS < 30%, D 0 < IS < 30%, U
Arg. 5% 0 < IS < 30%, D 0 < IS < 30%, D 0 < IS < 30%, D
Arg.10% IS > 70%, U 30% < IS < 70%, U 30% < IS < 70%, U
Arg.15% - 0 < IS < 30%, D -

Group 5

CTRL - - -
Glycerol - - -
Arg. 5% - - -
Arg.10% - - -
Arg.15% - 0 < IS < 30%, D -

Group 6

CTRL - 0 < IS < 30%, F -
Glycerol - 0 < IS < 30%, F -
Arg. 5% - - -
Arg.10% - - -
Arg.15% IS > 70%, U IS > 70%, U 0 < IS < 30%, U

The intensity and distribution of marked iNOS in epithelial skin, cutaneous annexes, and connective tissue are listed. The values 
are the average of semiquantitative analyses made by three blinded observers. IS, immunohistochemical staining; -, absence of 
staining. The staining distribution was classified as diffuse (D), focused (F), or uniform (U).

FIGURE 8 - Photomicrographs of immunohistochemical iNOS detection in female mouse skin. Immunohistochemical iNOS 
detection of group 3 mice. (A) control group, with positive staining in the connective tissue and skin appendages (x100, detail 
x400); (B) group treated with 5% L-arginine, showing positive staining in the epithelial cells, connective tissue, and skin appendages 
(x400); (C) group treated with L-arginine 15%, with positive staining only in cutaneous annexes (x400).
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of NOS by approximately 1000-fold, the affinity of NOS 
for arginine is greater (Kavalukas et al., 2012). Thus, in 
agreement with the results by Witte and coworkers (2000), 
the results of the present study also suggest that topically 
administrated arginine can penetrate into the skin, and 
owing to its higher affinity for NOS, it binds preferentially 
to NOS in the synthesis of NO, and thereby induces the 
synthesis of collagen.

Elastic fibers also undergo age-related changes. 
The fragmentation of elastic fibers results in a decrease in 
the physiological elasticity of the skin (Waller, Maibach, 
2006). Furthermore, aged cells show a reduced ability to 
resynthesize elastic fibers that have degraded naturally 
(Jenkins, 2002). In the present study, a significant 
decrease in the amount of elastic fibers was found with 
aging in female mice, possibly explained by the estrogen 
deficiency characteristic of the final stages of childbearing 
age. Group 3 mice showed the largest amount of elastic 
fibers in the skin after treatment with L-arginine at 
15% in comparison with mice from other groups. This 
suggests that L-arginine might contribute to an increase 
in the amount of elastic fibers in the skin of mice over 20 
weeks of age, representing animals in the final stages of 
reproductive aging.

CONCLUSION

In the present study, topical treatment with L-arginine 
improved skin resistance to tensile force in 20-week-old 
female mice (group 3), as well as treatment with 15% 

L-arginine stimulated formation of larger amounts of 
elastic fibers and collagen. According to these results, 
L-arginine, which exhibits a hydrophilic character, could 
be a promising active ingredient in cosmetics to contribute 
to the postponement of skin aging effects, especially for 
women nearing the menopausal period.
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