Asymmetric Opening of Mitochondrial Permeability Transition Pore in Mouse Brain Hemispheres

A Link to the Mitochondrial Calcium Uniporter Complex

Authors

  • Mehvish Batool Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
  • Hajra Fayyaz Department of Biochemistry
  • Muhammad Rizwan Alam Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan https://orcid.org/0000-0002-1578-5723

DOI:

https://doi.org/10.1590/s2175-97902022e20007

Keywords:

Mitochondrial Permeability Transition Pore (mPTP), Mitochondrial Ca2 Uniporter Complex (MCUC), Brain Hemispheres, Kidney Cortex, Medulla

Abstract

The prolonged entry of large amounts of calcium into the mitochondria through the mitochondrial calcium uniporter complex (MCUC) may cause the permeability transition pore (mPTP) to open, which contributes to the pathogenesis of several diseases. Tissue-specific differences in mPTP opening due to variable expression of MCUC components may contribute to disease outcomes. We designed this study to determine differential mPTP opening in mitochondria isolated from different regions of mouse brain and kidney and to compare it with the expression of MCUC components. mPTP opening was measured using mitochondria isolated from the left/right brain hemispheres (LH/RH, respectively) and from kidney cortex/medulla, while the expression level of MCUC components was assessed from total cellular RNA. Interestingly, LH mitochondria showed less calcium-induced mPTP opening as compared to RH mitochondria at two different calcium concentrations. Conversely, mPTP opening was similar in the renal cortex and renal medulla mitochondria. However, the kidney mitochondria demonstrated bigger and faster mPTP opening as compared to the brain mitochondria. Furthermore, asymmetric mPTP opening in the LH and RH mitochondria was not associated with the expression of MCUC components. In brief, this study demonstrates thus far unreported asymmetric mPTP opening in mouse brain hemispheres that is not associated with the mRNA levels of MCUC components.

Downloads

Download data is not yet available.

References

Arthur JM, Thongboonkerd V, Scherzer JA, Cai J, Pierce WM, Klein JB. Differential expression of proteins in renal cortex and medulla: a proteomic approach. Kidney Int. 2002;62(4):1314-1321.

Berman SB, Watkins SC, Hastings TG. Quantitative biochemical and ultrastructural comparison of mitochondrial permeability transition in isolated brain and liver mitochondria: evidence for reduced sensitivity of brain mitochondria. Exp Neurol. 2000;164(2):415-425.

Chapoy-Villanueva H, Silva-Platas C, Gutierrez-Rodriguez AK, Garcia N, Acuna-Morin E, Elizondo-Montemayor L, et al. Changes in the stoichiometry of uniplex decrease mitochondrial calcium overload and contribute to tolerance of cardiac ischemia/reperfusion injury in hypothyroidism. Thyroid. 2019;29(12):1755-1764.

Csordas G, Golenar T, Seifert EL, Kamer KJ, Sancak Y, Perocchi F, et al. MICU1 Controls Both the Threshold and Cooperative Activation of the Mitochondrial Ca2+ Uniporter. Cell Metab. 2013;17(6):976-987.

Duboc V, Dufourcq P, Blader P, Roussigne M. Asymmetry of the Brain: Development and Implications. Annu Rev Genet. 2015;49:647-672.

Eirin A, Lerman A, Lerman LO. The emerging role of mitochondrial targeting in kidney Disease. Handb Exp Pharmacol. 2017;240:229-250.

Eliseev RA, Filippov G, Velos J, VanWinkle B, Goldman A, Rosier RN, et al. Role of cyclophilin D in the resistance of brain mitochondria to the permeability transition. Neurobiol Aging. 2007;28(10):1532-1542.

Gainutdinov T, Molkentin JD, Siemen D, Ziemer M, Debska-Vielhaber G, Vielhaber S, et al. Knockout of cyclophilin D in Ppif(-)/(-) mice increases stability of brain mitochondria against Ca(2)(+) stress. Arch Biochem Biophys. 2015;579:40-46.

Gao H, Zhang M. Asymmetry in the brain influenced the neurological deficits and infarction volume following the middle cerebral artery occlusion in rats. Behav Brain Funct. 2008;4:57.

Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, et al. Mitochondrial Ca2+ and apoptosis. Cell Calcium. 2012;52(1):36-43.

Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol. 2018;19(11):713-730.

Giorgio V, Guo LS, Bassot C, Petronilli V, Bernardi P. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium . 2018;70:56-63.

Giraldo-Chica M, Schneider KA. Hemispheric asymmetries in the orientation and location of the lateral geniculate nucleus in dyslexia. Dyslexia. 2018;24(2):197-203.

Grabrucker S, Haderspeck JC, Sauer AK, Kittelberger N, Asoglu H, Abaei A, et al. Brain lateralization in mice is associated with zinc signaling and altered in prenatal zinc deficient mice that display features of autism spectrum disorder. Front Mol Neurosci. 2017;10:450.

Halestrap AP, Richardson AP. The mitochondrial permeability transition: A current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol. 2015;78:129-141.

Kalani K, Yan SF, Yan SS. Mitochondrial permeability transition pore: a potential drug target for neurodegeneration. Drug Discov Today. 2018;23(12):1983-1989.

Kamer KJ, Mootha VK. MICU1 and MICU2 play nonredundant roles in the regulation of the mitochondrial calcium uniporter. EMBO Rep. 2014;15(3):299-307.

Kannurpatti SS. Mitochondrial calcium homeostasis: Implications for neurovascular and neurometabolic coupling. J Cereb Blood Flow Metab. 2017;37(2):381-395.

Kiss DS, Toth I, Jocsak G, Bartha T, Frenyo LV, Barany Z, et al. Metabolic lateralization in the hypothalamus of male rats related to reproductive and satiety states. Reprod Sci. 2020;27(5):1197-1205.

Lambert JP, Luongo TS, Tomar D, Jadiya P, Gao E, Zhang X, et al. MCUB Regulates the molecular composition of the mitochondrial calcium uniporter channel to limit mitochondrial calcium overload during stress. Circulation. 2019;140(21):1720-1733.

Levy RB, Marquarding T, Reid AP, Pun CM, Renier N, Oviedo HV. Circuit asymmetries underlie functional lateralization in the mouse auditory cortex. Nat Commun. 2019;10(1):2783.

Mammucari C, Gherardi G, Rizzuto R. Structure, activity regulation, and role of the mitochondrial calcium uniporter in health and disease. Front Oncol. 2017;7:139.

Manousopoulou A, Saito S, Yamamoto Y, Al-Daghri NM, Ihara M, Carare RO, et al. Hemisphere asymmetry of response to pharmacologic treatment in an alzheimer's disease mouse model. J Alzheimers Dis. 2016;51(2):333-338.

Markus NM, Hasel P, Qiu J, Bell KF, Heron S, Kind PC, et al. Expression of mRNA encoding Mcu and other mitochondrial calcium regulatory genes depends on cell type, neuronal subtype, and Ca2+ signaling. PLoS One. 2016;11(2):e0148164.

Minkova L, Habich A, Peter J, Kaller CP, Eickhoff SB, Kloppel S. Gray matter asymmetries in aging and neurodegeneration: A review and meta-analysis. Hum Brain Map. 2017;38(12):5890-5904.

Muntane G, Santpere G, Verendeev A, Seeley WW, Jacobs B, Hopkins WD, et al. Interhemispheric gene expression differences in the cerebral cortex of humans and macaque monkeys. Brain Struct Funct. 2017;222(7):3241-3254.

Ocklenburg S, Gunturkun O. Hemispheric asymmetries: the comparative view. Front Psychol. 2012;3:5.

Oxenoid K, Dong Y, Cao C, Cui TX, Sancak Y, Markhard AL, et al. Architecture of the mitochondrial calcium uniporter. Nature. 2016;533(7602):269-273.

Paillard M, Csordas G, Szanda G, Golenar T, Debattisti V, Bartok A, et al. Tissue-specific mitochondrial decoding of cytoplasmic Ca(2+) signals is controlled by the stoichiometry of MICU1/2 and MCU. Cell Rep. 2017;18(10):2291-2300.

Park JH, Kim CS, Won KS, Oh JS, Kim JS, Kim HW. Asymmetry of cerebral glucose metabolism in very low-birth-weight infants without structural abnormalities. PLoS One . 2017;12(11):e0186976.

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.

Raffaello A, De Stefani D, Sabbadin D, Teardo E, Merli G, Picard A, et al. The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J. 2013;32(17):2362-2376.

Sancak Y, Markhard AL, Kitami T, Kovacs-Bogdan E, Kamer KJ, Udeshi ND, et al. EMRE Is an Essential Component of the Mitochondrial Calcium Uniporter Complex. Science. 2013;342(6164):1379-1382.

Schiffer TA, Gustafsson H, Palm F. Kidney outer medulla mitochondria are more efficient compared with cortex mitochondria as a strategy to sustain ATP production in a suboptimal environment. Am J Physiol Renal Physiol. 2018;315(3):F677-F681.

Shipton OA, El-Gaby M, Apergis-Schoute J, Deisseroth K, Bannerman DM, Paulsen O, et al. Left-right dissociation of hippocampal memory processes in mice. Proc Natl Acad Sci USA. 2014;111(42):15238-15243.

Sun T, Walsh CA. Molecular approaches to brain asymmetry and handedness. Nat Rev Neurosci. 2006;7(8):655-662.

Sun Y, Chen Y, Collinson SL, Bezerianos A, Sim K. Reduced hemispheric asymmetry of brain anatomical networks is linked to schizophrenia: A connectome study. Cereb Cortex. 2017;27(1):602-615.

Toth I, Kiss DS, Jocsak G, Somogyi V, Toronyi E, Bartha T, et al. Estrogen- and satiety state-dependent metabolic lateralization in the hypothalamus of female rats. PLoS One . 2015;10(9):e0137462.

Tsai KJ, Yang CH, Lee PC, Wang WT, Chiu MJ, Shen CK. Asymmetric expression patterns of brain transthyretin in normal mice and a transgenic mouse model of Alzheimer’s disease. Neuroscience. 2009;159(2):638-646.

Tsai MF, Phillips CB, Ranaghan M, Tsai CW, Wu Y, Willliams C, et al. Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex. Elife. 2016;5:e15545.

Wei L, Zhong S, Nie S, Gong G. Aberrant development of the asymmetry between hemispheric brain white matter networks in autism spectrum disorder. Eur Neuropsychopharmacol. 2018;28(1):48-62.

Woods JJ, Wilson JJ. Inhibitors of the mitochondrial calcium uniporter for the treatment of disease. Curr Opin Chem Biol. 2019;55:9-18.

Zhai Z, Feng J. Left-right asymmetry influenced the infarct volume and neurological dysfunction following focal middle cerebral artery occlusion in rats. Brain Behav. 2018;8(12):e01166.

Downloads

Published

2022-11-23

Issue

Section

Original Article

How to Cite

Asymmetric Opening of Mitochondrial Permeability Transition Pore in Mouse Brain Hemispheres: A Link to the Mitochondrial Calcium Uniporter Complex. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e20007

Funding data