Antifungal activity of silver nanoparticles and clotrimazole against Candida spp.

Authors

  • Maria Laura Meneses Laboratorio de Micología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina, CONICET; Instituto de Ingeniería y Agronomía, Universidad Nacional Arturo Jauretche, Buenos Aires, Argentina; Laboratorio Central, Hospital Escuela, Departamento de Clínicas, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires, Argentina https://orcid.org/0000-0002-0817-5791
  • Maite Recalde Instituto de Ingeniería y Agronomía, Universidad Nacional Arturo Jauretche, Buenos Aires, Argentina
  • Paula Lorena Martin Laboratorio Central, Hospital Escuela, Departamento de Clínicas, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires, Argentina
  • Alejandro Guillermo Pardo Laboratorio de Micología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina, CONICET

DOI:

https://doi.org/10.1590/s2175-97902022e18719

Keywords:

Silver nanoparticles, Antifungal, Clotrimazole, Candida spp

Abstract

The aim of present study was calculate the Minimum inhibitory concentrations (MICs) of silver nanoparticles and clotrimazole for Candida species and their interaction by the adaptation of standarized methods. The MICs values of clotrimazole were 9 E-04-3 E-03 ug/ml, 0.1-0.6 ug/ml, 3 E-03- 0.1 ug/ml and 3 E-03-0.3 ug/ml for Candida albicans susceptible to fluconazole, Candida albicans resistance to fluconazole, Candida krusei and Candida parapsilosis respectively. The MICs values of silver nanoparticles were 26.50- 53 ug/ml; 26.50-106 ug/ml; 106-212 ug/ ml and 26.50- 53 ug/ml for Candida albicans susceptible to fluconazole, Candida albicans resistance to fluconazole, Candida krusei and Candida parapsilosis respectively. Synergism between clotrimazole and silver nanoparticles was measured by checkerboard BMD (broth microdilution) test and shown only for C. albicans susceptible to fluconazole because the fractional inhibitory concentrations (FICs) values were 0.07 - 0.15 ug/ml. Indifference was shown for the other species tested because the FICs values were between 0.5 - 2- 3.06 ug/ml. The results suggest synergistic activity depending on the fungus species analysed, however we recommend the incorporation of others measurement methodologies to confirm our results. As for measurement methodologies of MICs of silver nanoparticles and clotrimazole international normative were respected to guarantee reproducible and comparable results.

Downloads

Download data is not yet available.

References

Arendrup MC, Cuenca-Estrella M, Lass-Flörl C, Hope W. EUCAST-AFST. The European Committee on Antimicrobial Susceptibility Testing-Subcommittee on Antifungal Susceptibility Testing. EUCAST DEFINITIVE DOCUMENT EDef 7.2 Revision. Method for the determination of broth dilution minimum Inhibitory concentrations. Clin Microbiol Infect. 2012;18(7):688-689. https://doi.org/10.1111/j.1469-0691.2012.03880.x

» https://doi.org/10.1111/j.1469-0691.2012.03880.x

Bhainsa KC, D’Souza SF. Extracellular biosynthesis of silver nano-particles using the fungus Aspergillus fumigatus. Colloids Surf B. 2006;47(2):160-4.

Castañeda-Ramírez C, Cortes-Rodríguez V, De la Fuente-Salcido N, Bideshi DK, Barboza-Corona JE. Isolation of Salmonella spp. from lettuce and evaluation of its susceptibility to novel bacteriocins synthesized by Bacillus thuringiensis and antibiotics. J Food Prot. 2011;74(2):274-8.

Chopra I. The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother. 2007;59(4):587-590.

Crowley PD, Gallagher HC. Clotrimazole as a pharmaceutical: past, present and future. J Appl Microbiol. 2014;117(3):611-617.

EUCAST-AFST. The European Committee on Antimicrobial Susceptibility Testing-Subcommittee on Antifungal Susceptibility Testing. EUCAST Definitive Document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative. Clin Microbiol Infect . 2008;14(4):398-405.

Gupta A, Matsui K, Lo JF, Silver S. Molecular basis for resistance to silver cations in Salmonella. Nat Med. 1999;5(2):183-8.

Hassan AA, Mansour MK, Mahmoud HH. Biosynthesis of silver nanoparticles (Ag-Nps) (a model of metals) by Candida albicans and its antifungal activity on Some fungal pathogens (Trichophyton mentagrophytes and Candida albicans). New York Sci J. 2013;6(3):27-34.

Hitchcock AC, Dickinson K, Brown BS, Evans EGV, Adams JD. Interaction of azole antifungal antibiotics with cytochrome P-450-dependent 14а-sterol demethylase purified from Candida albicans. Biochem J. 1990;266(2):475-480.

Hussain Qadri SMH, Flournoy DJ, Qadri SGM, Ramirez EG. Susceptibility o f clinical isolates o f yeasts to anti- fungal agents. Mycopathologia. 1986;95(3):183-187.

Jenkins SG, Schuetz AN. Current concepts in laboratory testing to guide antimicrobial therapy. Mayo Clin Proc. 2012;87(3):290-308.

Juneyoung L, Keuk-Jun K, Woo Sang S, Jong Guk K and Dong Gun L. The Silver Nanoparticle (Nano-Ag): a New Model for Antifungal Agents, Silver Nanoparticles. 2010. ISBN: 978-953-307-028-5, InTech. http://www.intechopen.com/books/silver-nanoparticles/the-silver-nanoparticle-nano-ag-a-new-model-for-antifungal-agents

» http://www.intechopen.com/books/silver-nanoparticles/the-silver-nanoparticle-nano-ag-a-new-model-for-antifungal-agents

Kalimuthu K, Panneerselvam C, Chou C, Li-Chun T, Murugan K, Kun-Hsien T, et al. Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf Environ Prot. 2017;109:82-96.

Kasthuri J, Kathiravan K, Rajendiran N. Phyllanthin- assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanopart Res. 2009;11(5):1075-1085.

Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, et al. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 2009;22(2):235-42.

Kollef MH, Afessa B, Anzueto A, Veremakis C, Kerr KM, Margolis BD, et al. Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia. NASCENT Investigation Group. The NASCENT randomized trial. JAMA. 2008;300(7):805-13.

Lee B, Lee MJ, Yun SJ, Kim K, Choi IH, Park S. Silver nanoparticles induce reactive oxygen species-mediated cell cycle delay and synergistic cytotoxicity with 3-bromopyruvate in Candida albicans, but not in Saccharomyces cerevisiae. Int J Nanomed. 2019:14:4801-4816.

Leclercq R, Cantón R, Brown DF, Giske CG, Heisig P, MacGowan AP, et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect . 2013;19(2):141-60.

Li XZ, Nikaido H, Williams KE. Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol. 1997;179:6127-32.

Modak SM, Stanford JW, Bradshaw W, Fox CL Jr. Silver sulfadiazine (AgSD) resistant Pseudomonas infection in experimental burn wounds. Panminerva Med. 1983;25(3):181-8.

Olmo C, Alonso de la Espriella G, Escobar Sánchez L. Curso continuo de actualización en Pediatría CCAP. 2011;11(1).

Panáček A, Kolář M, Večeřová R, Prucek R, Soukupová J, Kryštof V, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30(31):6333-6340.

Pelletier R, Peter J, Antin C, Gonzalez C, Wood L, Walsh TJ. Emergence of resistance of Candida albicans to clotrimazole in human immunodeficiency virus-infected children: in vitro and clinical correlations. J Clin Microbiol. 2000;38(4):1563-1568.

Pfaller MA, Diekema DL, Gibbs VA, Newell E, Nagy S Dobiasova, et al. Candida krusei, a Multidrug-Resistant Opportunistic Fungal Pathogen:Geographic and Temporal Trends from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005. J Clin Microbiol. 2008;46(2):515-521.

Pfaller MA, Moet GJ, Messer SA, Jones RN, Castanheira M. Candida bloodstream infections: comparison of species distributions and antifungal resistance patterns in community-onset and nosocomial isolates in the SENTRY Antimicrobial Surveillance Program, 2008-2009. Antimicrob Agents Chemother. 2011a;55(2):561-6.

Pfaller MA, Moet GJ, Messer SA, Jones RN, Castanheira M. Candida bloodstream infections: comparison of species distribution and resistance to chinocandin and azole antifungal agents in Intensive Care Unit (ICU) and non-ICU settings in the SENTRY Antimicrobial Surveillance Program(2008-2009). Int J Antimicrob Agents. 2011b;38(1):65-9.

Pfaller MA, Moet GJ, Messer SA, Jones RN, Castanheira M. Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: Report from the SENTRY Antimicrobial Surveillance Program (2008 to 2009). J Clin Microbiol . 2011c;49(1):396-9.

Pirnay JP, De Vos D, Cochez C, Bilocq F, Pirson J, Struelens M, et al. Molecular epidemiology of Pseudomonas aeruginosa colonization in a burn unit: persistence of a multidrug-resistant clone and a silver sulfadiazine-resistant clone. J Clin Microbiol . 2003;41(3):1192-202.

Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76-83.

Richter SS, Galask RP, Messer SA, Hollis RJ, Diekema DJ, Pfaller MA. Antifungal Susceptibilities of Candida Species Causing Vulvovaginitis and Epidemiology of Recurrent Cases. J Clin Microbiol . 2005;43(5):2155-2162.

Riggle PJ0, Kumamoto CA. Role of a Candida albicans P1- Type ATPase in resistance to copper and silver ion yoxicity. J Bacteriol. 2000;182(17):4899-4905.

Saiman L. Clinical utility of synergy testing for multidrugresistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis: “the motion for.” Paediatr Respir Rev. 2007;8(3):249-55.

Salas-Orozco M, Niño-Martínez N,Martínez-Castañón GA, Torres Méndez F, Compean Jasso ME, Ruiz F. Mechanisms of resistance to silver nanoparticles in endodontic bacteria: a literature review. J Nanomater. 2019; Article ID 7630316, https://doi.org/10.1155/2019/7630316

» https://doi.org/10.1155/2019/7630316

Sanglard D, Odds FC. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis. 2002;2(2):73-85.

Sanjenbam P, Gopal JV, Kannabiran K. Anticandidal activity of silver nanoparticles synthesized using Streptomyces sp.VITPK1. J Mycol Med. 2014;24(3):211-9.

Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003;27(2-3):341-53.

Sondi I, Salopek-Sondi B. Silvernanoparticlesasantimicrobial agent: a case studyon E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177-182.

Tutaj K, Szlazak R, Szalapata K, Starzyk J, Luchowski R, Grudzinski W, et al. Amphotericin B-silver hybrid nanoparticles: synthesis, properties and antifungal activity. Nanomedicine: Nanotechnology. Biol Med. 2016;12(4):1095-1103.

Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV. A novel one-pot “green” synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res. 2006;341(12):2012-8.

Young WJ, Melaiye A. Silver and its application as an antimicrobial agent. Expert Opin Ther Pat. 2005;15(2):125-30.

Downloads

Published

2022-11-10

Issue

Section

Original Article

How to Cite

Antifungal activity of silver nanoparticles and clotrimazole against Candida spp. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e18719