Seaweed Chara baltica

Isolation, Characterization and In vivo Antidiabetic Study

Authors

DOI:

https://doi.org/10.1590/s2175-97902022e19323

Keywords:

Antioxidant activity; α-Glucosidase inhibitory; Langerhans islets; Glycaemia

Abstract

For the first time, five known metabolites - 1 and 5 are reported from the ethyl acetate extract from seaweed Chara baltica (EAE). Both the metabolites and EAE were screened against free- radicals, α-glucosidase enzyme and glycaemia in albino rats. 4, 5 and EAE depicted significant antiradical and α-glucosidase inhibitory profile. Particularly, compound 5 showed equivalent inhibition of superoxide free radical as that of the standard drug with IC50 value of 32.0 µg/mL. In addition, the EAE (200 mg/kg b.w) revealed significant reduction in plasma glucose, body weight, total cholesterol, total glycerides and LDL levels in Streptozotocin-induced diabetic rats. The HDL levels were markedly augmented in EAE treated diabetic rats, when compared with control group. EAE abolished the increased lipid peroxidation content in both liver and kidneys. The histopathological examination of pancreas of EAE protected the Langerhans islets with the number of islet cells were found statistically significant, when compared to diabetic control pancreas. This is the first in vitro and in vivo antidiabetic report on C. baltica.

Downloads

Download data is not yet available.

References

Ambigaipalan P, Shahidi F. Bioactive peptides from shrimp shell processing discards: Antioxidant and biological activities. J Funct Foods. 2017;34:7-17.

Babu PS, Prabuseenivasan S, Ignacimuthu S. Cinnamaldehyde - A potential antidiabetic agent. Phytomedicine. 2007;14(1):15-22.

Berger J, Schagerl M. Allelopathic activity of Characeae. Hydrobiologia. 2003;501(1-3):109.

Cabrita MT, Vale C, Rauter AP. Halogenated compounds from marine algae. Mar Drugs. 2010;8(8):2301-2317.

Chitturi BR, Tatipamula VB, Dokuburra CB, Mangamuri UK, Tuniki VR, Kalivendi SK, et al. Pambanolides A-C from the South Indian soft coral Sinularia Inelegans. Tetrahedron. 2016;72(16):1933-1940.

Ghezzi AC, Cambri LT, Botezelli JD, Ribeiro C, Dalia RA, Mello MAR. Metabolic syndrome markers in wistar rats of different ages. Diabetol Metab Syndr. 2012;4(1):16.

Ghoul JE, Smiri M, Ghrab S, Boughattas NA, Ben-Attia M. Antihyperglycemic, antihyperlipidemic and antioxidant activities of traditional aqueous extract of Zygophyllum album in streptozotocin diabetic mice. Pathophysiology. 2012;19(1):35-42.

Haritha P, Patnaik SK, Tatipamula VB. Chemical and pharmacological evaluation of manglicolous lichen Graphis ajarekarii Patw. & C. R. Kulk. Vietnam J Sci Technol. 2019;57(3):300-308.

Lauritano C, Ianora A. Marine organisms with anti-diabetes properties. Mar Drugs. 2016;14(12):220.

Luo Q, Cai Y, Yan J, Sun M, Corke H. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sci. 2004;76(2):137- 149.

Naidu KK, Bharadwaj TV, Alekya K, Lakshmi YB, Sastry VG. Qualitative analysis and free radicals scavenging ability of marine algae, Chara baltica. J Integral Sci. 2018;1(3):1-5.

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobartituric acid reaction. Anal Biochem. 1978;95(2):351-358.

Patterson GML, Larsen LK, Moore RE. Bioactive natural products from blue-green algae. J Appl Phycol. 1994;6(2):151- 157.

Pietra F. Secondary metabolites from marine microorganisms: bacteria, protozoa, algae and fungi. Achievements and prospects. Nat Prod Rep. 1997;14(5):453-464.

Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. 2017;38(7):592-607.

Rao CB, Babu DC, Bharadwaj TV, Srikanth D, Vardhan KS, Raju TV, et al., Isolation, structural assignment and synthesis of (S,E)-2-methyloctyl 3-(4-methoxyphenyl) propenoate from the marine soft coral Sarcophyton ehrenbergi. Nat Prod Res. 2015;29(1):70-76.

Sastry AVS, Vedula GS, Tatipamula VB. In-vitro biological profile of mangrove associated lichen, Roccella montagnei extracts. Inventi Impact: Ethnopharmacol. 2018;2018(3):153-158.

Talluri MR, Ketha A, Battu GR, Tadi RS, Tatipamula VB. Protective nature of Aurelia aurita against free radicals and Streptozotocin-induced diabetes. Bangladesh J Pharmacol. 2018;13(3):287-295.

Tatipamula VB, Killari KN, Ketha A, Vedula GS. Taxithelium napalense acts against free radicals and diabetes mellitus. Bangladesh J Pharmacol . 2017;12(2):197-203.

Tatipamula VB, Kolli MK, Lagu SB, Paidi KR, Reddy PR, Yejella RP. Novel indolizine derivatives lowers blood glucose levels in streptozotocin-induced diabetic rats: a histopathological approach. Pharmacol Rep. 2019;71(2):233-242.

Tatipamula VB, Vedula GS, Paidi KR, Annam SSP. Nutraceutical value of lichens, Graphis ajarekarii and Parmotrema tinctorum and their implications in diabetes. Inventi Impact: Nutraceuticals. 2018;2018:189-194.

Tatipamula VB, Vedula GS, Sastry AVS. Antarvediside A-B from manglicolous lichen Dirinaria consimilis (Stirton) D.D. Awasthi and their pharmacological profile. Asian J Chem. 2019;31(4):805-812.

Tatipamula VB, Vedula GS. Anti-inflammatory properties of Dirinaria consimilis extracts in albino rats. J Biomed Sci. 2017;4(1):3-8.

Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L. The many faces of diabetes: a disease with increasing heterogeneity. Lancet. 2014;383(9922):1084-1094.

Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84.

Downloads

Published

2022-11-18

Issue

Section

Original Article

How to Cite

Seaweed Chara baltica: Isolation, Characterization and In vivo Antidiabetic Study. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e19323