Calendula officinalis L. flower extract-mediated green synthesis of silver nanoparticles under LED light

Authors

  • Angélica Panichi Santos Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
  • Melissa Marques Gonçalves Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil https://orcid.org/0000-0002-6524-2188
  • Barbara Justus Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
  • Daniele Priscila da Silva Fardin Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
  • Ana Cristina Toledo Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
  • Jane Budel Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil https://orcid.org/0000-0003-1873-2253
  • Josiane Padilha Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil

DOI:

https://doi.org/10.1590/s2175-97902022e19519%20

Keywords:

Nanotechnology, Metal nanoparticle, Surface plasmon resonance

Abstract

Silver nanoparticles (AgNPs) are among the most known nanomaterials being used for several purposes, including medical applications. In this study, Calendula officinalis L. flower extract and silver nitrate were used for green synthesis of silver nanoparticles under red, green and blue light-emitting diodes. AgNPs were characterized by Ultraviolet-Visible Spectrophotometry, Field Emission Scanning Electron Microscopy, Dynamic Light Scattering, Electrophoretic Mobility, Fourier Transform Infrared Spectroscopy and X-ray Diffraction. Isotropic and anisotropic silver nanoparticles were obtained, presenting hydrodinamic diameters ranging 90 - 180 nm, polydispersity (PdI > 0.2) and moderate stability (zeta potential values around - 20 mV).

Downloads

Download data is not yet available.

References

Ameen F, AlYahia S, Govarthanan M, ALjahdali N, Al- Enazi N, Alsamhari K, et al. Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. J Mol Struct. 2020;1202:127233.

Ameen F, Srinivasan P, Selvankumar T, Kamala-Kannan S, Al Nadhari S, Almansob A, et al. Phytosynthesis of silver nanoparticles using Mangifera indica flower extract as bioreductant and its broad-spectrum antibacterial activity. Bioorg Chem. 2019;88:102970.

Aragon-Martinez OH, Isiordia-Espinoza MA, Tejeda Nava FJ, Aranda Romo S. Dental Care Professionals Should Avoid the Administration of Amoxicillin in Healthy Patients During Third Molar Surgery: Is Antibiotic Resistence the Only Problem? J Oral Maxillofac Surg. 2016;74(8):1512-1513.

Barrera N, Guerrero L, Debut A, Santa-Cruz P. Printable nanocomposites of polymers and silver nanoparticles for antibacterial devices produced by DoD technology. PLoS ONE. 2018;13(7):1-19.

Baghizadeh A, Ranjbar S, Gupta VK, Asif M, Pourseyedi S, Karimi MJ et al. Green synthesis of silver nanoparticles using seed extract of Calendula officinalis in liquid phase. J Mol Liq. 2015;207:159-163.

Bindhu MR, Umadevi M. Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim Acta Part A. 2015;135:373-378.

Bhui DK, Bar H, Sarkar P, Sahoo GP, De SP, Misha A. Synthesis and UV-vis spectroscopic study of silver nanoparticles in aqueous SDS solution. J Mol Liq . 2009;145(1):33-37.

Buszewski B, Rafinska K, Pomastowski P, Walczak J, Rogowska A. Novel aspects of silver nanoparticles functionalization. Colloids Surf A. 2016;506:170-178.

Chidambaram J, Saritha K, Maheswari R, Muzammil MS. Efficacy of Green Synthesis of Silver Nanoparticles using Flowers of Calendula Officinalis. Chem Sci Trans. 2014;3(2):773-777.

Coviello T, Trotta AM, Marianecci C, Carafa M, Di Marzio L, Rinaldi F, et al. Gel-embedded niosomes: Preparation, characterization and releasestudies of a new system for topical drug delivery. Colloids Surf B. 2015;125:291-299.

Emre A, Sertkaya M, İşler A, Bahar AY, Şanlı NA, Özkömeç A, et al. Comparison of the protective effects of calendula officinalis extract and hyaluronic acid anti-adhesion barrier against postoperative intestinal adhesion formation in rats. Turk J Colorectal Dis. 2018;28(2):88-94.

Francis S, Joseph S, Koshy EP, Mathew B. Microwave assisted green synthesis of silver nanoparticles using leaf extract of Elephantopus scaber and its environmental and biological applications. Artif Cells Nanomed Biotechnol. 2018;46(4):795-804.

Garcia-Fulgueiras V, Zapata Y, Papa-Ezdra R, Ávila P, Caiata L, Seija V, et al. First characterization of K. pneumoniae ST11 clinical isolates harboring blaKPC-3 in Latin America. Rev Argent Microbiol. 2019;367:1-6.

Hassan SWM, Abd El-latif HH. Characterization and applications of the biosynthesized silver nanoparticles by Marine Pseudomonas sp. H64. J Pure Appl Microbiol. 2018;12(3):1289-1299.

Hosseinkazemi H, Biazar E, Bonakdar S, Ebadi M-T, Shokrgozar M-A, Rabiee M. Modification of PCL electrospun nanofibrous mat with Calendula officinalis extract for improved interaction with cells. Int J Polym Mater Polym Biomater. 2015;64(9):459-464.

Kaur A, Goyal D, Kumar R. Surfactant mediated interaction of vancomycin with silver nanoparticles. Appl Surf Sci. 2018;449:23-30.

Khan Z, Al-Thabaiti SA, Obaid AY, Al-Youbi AO. Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids Surf B . 2011;82(2):513-517.

Kumar B, Angulo Y, Smita K, Cumbal L, Debut A. Capuli cherry-mediated green synthesis of silver nanoparticles under white solar and blue LED light. Particuology. 2016;24:123-128.

Lee SW, Chang SH, Lai YS, Lin CC, Tsai CM, Lee YC, et al. Effect of temperature on the growth of silver nanoparticles using plasmon-mediated method under the irradiation of green LEDs. Materials. 2014;7(12):7781-7798.

López-Padilla A, Ruiz-Rodriguez A, Reglero G, Fornari T. Supercritical carbon dioxide extraction of Calendula officinalis: Kinetic modeling and scaling up study. J Supercrit Fluid. 2017;130:292-300.

Mishra AK, Mishra A, Pragya Chattopadhyay P. Screening of acute and sub-chronic dermal toxicity of Calendula officinalis L essential oil. Regul Toxicol Pharmacol. 2018;98:184-189.

Muthusamy G, Praburaman L, Thangasamy S, Jong-Hoon K, Seralathan K-K, Adithan A, et al. Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects. Int J Nanomed. 2015;10:1977-1983.

Mythili R, Selvankumar T, Kamala-Kannan S, Sudhakar C, Ameen F, Al-Sabri A, et al. Utilization of market vegetable waste for silver nanoparticle synthesis and its antibacterial activity. Mater Lett. 2018;225:101-104.

Nicolaus C, Junghanns S, Hartmann A, Murillo R, Ganzera M, Merfort I. In vitro studies to evaluate the wound healing properties of Calendula officinalis extracts. J Ethnopharmacol. 2017;196:94-103.

Pal S, Tak YK, Song JM. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712-1720.

Pordeli HR, Shaki H, Azari AA, Nezhad MS. Biosynthesis of Silver Nanoparticles by Fusarium solani isolates from Agricultural Soils in Gorgan, Iran. Med Lab J. 2018;12(4):17-22.

Rad ZP, Mokhtari J, Abbasi M. Preparation and characterization of Calendula officinalis-loaded PCL/ gum arabic nanocomposite scaffolds for wound healing applications. Iran Polym J. 2019;28(1):51-63.

Raj S, Mali SC, Trivedi R. Green synthesis and characterization of silver nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochem Biophys Res Commun. 2018;503(4):2814-2819.

Sengottaiyan A, Mythili R, Selvankumar T, Aravinthan A, Kamala-Kannan S, Manoharan K, et al. Green synthesis of silver nanoparticles using Solanum indicum L. and their antibacterial, splenocyte cytotoxic potentials. Res Chem Intermed. 2016;42:3095-3103.

Soema PC, Willems G-J, Jiskoot W, Amorij J-P, Kersten GF. Predicting the influence of liposomal lipid composition on liposome size, zeta potential and liposome-induced dendritic cell maturation using a design of experiments approach. Eur J Pharm Biopharm. 2015;94:427-435.

Sone BT, Manikandan E, Gurib-Fakim A, Maaza M. Sm2O3 nanoparticles green synthesis via Callistemon viminalis’ extract. J Alloy Compd. 2015;650:357-362.

Stamplecoskie KG, Scaiano JC. Light Emitting Diode Irradiation Can Control the Morphology and Optical Properties of Silver Nanoparticles. J Am Chem Soc. 2010;132(6):1825-1828.

Thema FT, Manikandan E, Gurib-Fakim A, Maaza M. Single phase Bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract. J Alloys Compd. 2016;657:655-661.

Valarmathi N, Ameen F, Almansob A, Kumar P, Arunprakash S, Govarthanan M. Utilization of marine seaweed Spyridia filamentosa for silver nanoparticles synthesis and its clinical applications. Mater Lett . 2020;263:127244.

Vijayan R, Joseph S, Mathew B. Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities. IET Nanobiotechnol. 2018;12(6):850-856.

Yang J, Dennis RC, Sardar DK. Room-temperature synthesis of flowerlike ag nanostructures consisting of single crystalline ag nanoplates. Mater Res Bull. 2011;46(7):1080-1084.

Downloads

Published

2022-11-23

Issue

Section

Original Article

How to Cite

Calendula officinalis L. flower extract-mediated green synthesis of silver nanoparticles under LED light. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e19519