Biochemical and histopathological evaluations of chronic renal failure rats treated with pluripotent human stem cells

Autores

  • Salem Abdel Hadi Habib Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt; Biochemistry Department, Faculty of Science, University of Tabuk, Saudi Arabia
  • Adel Ibrahim Alalawy Biochemistry Department, Faculty of Science, University of Tabuk, Saudi Arabia
  • Entsar Ali Saad Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt https://orcid.org/0000-0001-6477-8098
  • Rana Ramzy El-Sadda Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt

DOI:

https://doi.org/10.1590/s2175-97902022e20089%20

Palavras-chave:

Electrolytes, Growth factor, Hematopoietic stem cells, Immunosuppressor, Mesenchymal stem cells, Regeneration

Resumo

Regeneration of damaged kidney cells using stem cells is the current research approach in the treatment of chronic renal failure (CRF). In the present study, the histopathological and biochemical techniques were used to evaluate stem cells’ (SCs) role in treatment of CRF. Sixty-four rats were divided into eight groups. Group I (GI): rats were injected with doxorubicin (15 mg/kg) to initiate CRF. GII-GVII: rats were injected with doxorubicin and treated with SCs (1x106 MSCs or/and 2x104 HSCs/rat) with/without growth factors extract (200 µL/rat) and/or immunosuppressor (cyclosporine A, 5 mg/kg/day). GVIII: rats treated with PBS (100 µL/kg/day). Levels of creatinine, urea and uric acid were increased in rats sera after injection with doxorubicin, while blood electrolyte levels of Na, K, P and Mg were decreased. Also, histopathological abnormalities such as hyalinized blood vessels, degenerated hyalinized glomerulus tubules and cell debris in the lumen and degeneration of renal tissues were observed in these rats. After treatment with SCs, all these parameters restore their normal values with regeneration of the damaged cells as demonstrated in histopathology of the treated groups. It can be concluded that, the use of SCs in treatment of kidney diseases is a promising approach and needs more efforts.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Asanuma H, Meldrum DR, Meldrum KK. Therapeutic applications of mesenchymal stem cells to repair kidney injury. J Urol. 2010;184(1):26-33.

Behling EB, Sendao MC, Francescato HDC, Antunes LMG, Costa RS, Bianchi MP. Comparative study of multiple dosage of quercetin against cisplatin induced nephrotoxicity and oxidative stress in rat kidneys. Pharmacol Rep. 2006;58(4):526-32.

Brod J, Sirota JH. The renal clearance of endogenous “Creatinine” in man. J Clin Invest. 1948;27(5):645-54.

Chaney AL, Marbach EP. Modified reagents for determination of urea and ammonia. Clin Chem. 1962;8(2):130-32.

Chavakis E, Urbich C, Dimmeler S. Homing and engraftment of progenitor cells: A prerequisite for cell therapy. J Mol Cell Cardiol. 2008;45(4):514-22.

Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol. 2009;61(3):223-42.

Elsayed SA, Saad EA, Mostafa SI. Development of new potential anticancer metal complexes derived from 2-hydrazinobenzothiazole. Mini-Rev Med Chem. 2019;19(11):913-22. doi: 10.2174/1389557518666181017143548.

» https://doi.org/10.2174/1389557518666181017143548

Graham SB. Ouchterlony Double Immunodiffusion in Handbook. Totowa, New Jersey: Humana Press. 1996;135:749-52.

Habib SA, Saad EA, Al-Mutairi FM, Alalawy AI, Sayed MH, El-Sadda RR. Up-regulation of antioxidant status in chronic renal failure rats treated with mesenchymal stem cells and hematopoietic stem cells. Pak J Biol Sci. 2020;23(6):820-8. DOI: 10.3923/pjbs.2020.820.828

» https://doi.org/10.3923/pjbs.2020.820.828

Henry RJ, Sobel C, Kim J. A Modified carbonate phosphotungstate method for the determination of uric Acid and comparison with the spectrophotometric uricase method. Amer J Clin Pathol. 1957;28(2):152-60.

Kawaida K, Matsumoto K, Shimazu H, Nakamura T. Hepatocyte growth factor prevents acute renal failure and accelerates renal regeneration in mice. Proc Natl Acad Sci USA. 1994;91(10):4357-61.

Kazi JI, Mubarak M. Stem cells in kidney disease: opportunities and challenges. J Pak Med Assoc. 2011;61(2):112-3.

Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294-301.

Kim JH, Park DJ, Yun JC, Jung MH, Yeo HD, Kim H, et al. Human adipose tissue-derived mesenchymal stem cells protect kidneys from cisplatin nephrotoxicity in rats. Am J Physiol Renal Physiol. 2012;302(9):1141-50.

Kode A, Mukherjee S, Joglekar MV, Hardikar AA. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy. 2009;11(4):377-91.

Kunter U, Rong S, Djuric Z, Boor P, Muller-Newen G, Yu D, et al. Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol. 2006;17(8):2202-12.

Laemmli UK. Cleavge of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5.

Lee J, Yoon SR, Choi I, Jung H. Causes and mechanisms of hematopoietic stem cell aging. Int J Mol Sci. 2019;20(6):1272. doi:10.3390/ijms20061272

» https://doi.org/10.3390/ijms20061272

Little MH. Regrow or repair: potential regenerative therapies for the kidney. J Am Soc Nephrol . 2006;17(9):2390-401.

Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 2006;91(8):1017-26.

Ma H, Wu Y, Xu Y, Sun L, Zhang X. Human umbilical mesenchymal stem cells attenuate the progression of focal segmental glomerulosclerosis. Am J Med Sci. 2013a;346(6):486-93.

Ma H, Wu Y, Zhang W, Dai Y, Li F, Xu Y, et al. The effect of mesenchymal stromal cells on doxorubicin-induced nephropathy in rats. Cytotherapy . 2013b;15(6):703-11.

Mackintosh IP, Watson BW, O’Grady F. Development and further applications of a simple turbidity cell for continuously monitoring bacterial growth. Phys Med Biol. 1973;18(2):265-71.

Mansour MA, El-kashef HA, Al-Shabanah OA. Effect of captopril on doxorubicin-induced nephrotoxicity in normal rats. Pharmacol Res. 1999;39(3):233-7.

Maruna RFL. Colorimeteric determination of potassium. Clin Chem Acta. 1958;2:581-5.

Mimeault M, Batra SK. Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells . 2006;24(11):2319-45.

Morigi M, Rota C, Montemurro T, Montelatici E, Lo Cicero V, Imberti B, et al. Life-sparing effect of human cord blood- mesenchymal stem cells in experimental acute kidney injury. Stem Cells . 2010;28(3):513-22.

Morigi M, Rota C, Remuzzi G. Mesenchymal stem cells in kidney repair. Methods Mol Biol. 2016;1416:89-107. doi: 10.1007/978-1-4939-3584-0_5.

» https://doi.org/10.1007/978-1-4939-3584-0_5

Mosanya CH, Isaacs JD. Tolerising cellular therapies: what is their promise for autoimmune disease? Ann Rheum Dis. 2019;78(3):297-310. doi:10.1136/annrheumdis-2018-214024

» https://doi.org/10.1136/annrheumdis-2018-214024

National Institutes of Health (NIH). Guide for the Care and Use of Laboratory Animals, seventh ed., National Academy Press, Washington, DC; 1996.

Papazova DA, Oosterhuis NR, Gremmels H, van Koppen A, Joles JA, Verhaar MC. Cell-based therapies for experimental chronic kidney disease: a systematic review and meta-analysis. Dis Models Mech. 2015;8(3):281-93. doi: 10.1242/ dmm.017699.

» https://doi.org/10.1242/ dmm.017699

Puchtler H, Meloan SN, Waldrop FS. Application of current chemical concepts to metal-haematein and -brazilein stains. Histochemistry. 1986;85(5):353-64.

Rahyussalim AJ, Saleh I, Kurniawati T, Lutfi A. Improvement of renal function after human umbilical cord mesenchymal stem cell treatment on chronic renal failure and thoracic spinal cord entrapment: a case report. J Med Case Rep. 2017;11:334. doi: 10.1186/s13256-017-1489-7

» https://doi.org/10.1186/s13256-017-1489-7

Saad EA, EL-Demerdash RS, Abd EI-Fattah EM. Mesenchymal stem cells are more effective than captopril in reverting cisplatin-induced nephropathy. BIOCELL. 2019;43(2):73-9. doi: 10.32604/biocell.2019.07020

» https://doi.org/10.32604/biocell.2019.07020

Saad EA, El -Gayar HA, El-Demerdash RS, Radwan KH. Frankincense administration antagonizes adenineinduced chronic renal failure in rats. Pharmacogn Mag. 2018a;14(58):634-40. doi: 0.4103/pm.pm_271_18

» https://doi.org/0.4103/pm.pm_271_18

Saad EA, El -Gayar HA, El-Demerdash RS, Radwan KH. Hepato-toxic risk of gum arabic during adenine-induced renal toxicity prevention. J Appl Pharm Sci. 2018c;8(12):104-11. doi: 10.7324/JAPS.2018.8801

» https://doi.org/10.7324/JAPS.2018.8801

Saad EA, Elsayed SA, Hassanien MM, AL-Adl MS. The new iron(III) 3-oxo-N-(pyridin-2-yl)butanamide complex promotes Ehrlich solid tumor regression in mice via induction of apoptosis. Appl Organomet Chem. 2020;34(1):e5282. https://doi.org/10.1002/aoc.5282

» https://doi.org/https://doi.org/10.1002/aoc.5282

Saad EA, Hassanien MM, El-mezayen HA, ELmenawy NM. Regression of murine Ehrlich ascites carcinoma using synthesized cobalt complex. Med Chem Commun. 2017b;8(5):1103-11. doi:10.1039/C6MD00618C

» https://doi.org/10.1039/C6MD00618C

Saad EA, Hassanien MM, Elneely EA. Iron(III) diacetylmonoxime-2-hydrazinopyridine complex: a new prospective antitumor drug. Appl Organomet Chem . 2017a;31(9):e3684. doi:10.1002/aoc.3684

» https://doi.org/10.1002/aoc.3684

Saad EA, Marei HES, El-Magd MA, El-Fatiry HM. Molecular characterization of olfactory bulb neural stem cells during proliferation and differentiation. J Appl Pharm Sci . 2018b;8(1):87-92. doi: 10.7324/JAPS.2018.8113

» https://doi.org/10.7324/JAPS.2018.8113

Saad EA, Waly HM. Encapsulation of a new quinoxaline derivative in PLGA alters the pattern of its anticancer potency and induces apoptosis. Cancer Chemother Pharmacol. 2019;83(4):649-58. https://doi.org/10.1007/s00280-019-03770-0

» https://doi.org/https://doi.org/10.1007/s00280-019-03770-0

Tanabe YN, Randolph MA, Shimizu A, Butler PE, Lee WP. Prolonged survival of musculoskeletal xenografts with combined cyclosporine and 15-deoxyspergualin. Plast Reconstr Surg. 2000;105:695-703.

Tao ZW, Li LG, Geng ZH, Dang T, Zhu SJ. Growth factors induce the improved cardiac remodeling in autologous mesenchymal stem cell-implanted failing rat hearts. J Zheijang Univ Sci. B. 2010;11(4):238-48.

Toson EA, Habib SA, Saad EA, Harraz NH. Toxic and anti-fertility effects of Alocasia macrorrhiza and Calotropis procera ethanolic extracts on male mice. Int J Biochem. 2014;195:328-38.

Vassault A, Grafmeyer D, Naudun C, Dumont G, Belly M, Henny J. Protocole de validation de techniques. Ann Biol Clin. 1986;44:686-745.

Zhang W, Qin C, Zhou ZM. Mesenchymal stem cells modulate immune responses combined with cyclosporine in a rat renal transplantation model. Transplant Proc. 2007;39(10):3404-8.

Downloads

Publicado

2022-12-23

Edição

Seção

Original Article

Como Citar

Biochemical and histopathological evaluations of chronic renal failure rats treated with pluripotent human stem cells. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e20089