S-allylCysteine Ester/Caffeic Acid Amide Hybrids as Promising Antiprotozoal Candidates

Synthesis, Biological Evaluation and Molecular Modeling Studies

Autores

  • Andres Felipe Yepes Perez Química de Plantas Colombianas, Institute of Chemistry, Faculty of Exact and Natural Sciences, Universidad de Antioquia, Medellín, Colombia https://orcid.org/0000-0001-6975-5119
  • Wilson Cardona Galeano Química de Plantas Colombianas, Institute of Chemistry, Faculty of Exact and Natural Sciences, Universidad de Antioquia, Medellín, Colombia https://orcid.org/0000-0002-5374-1211
  • Sara Maria Robledo PECET-Medical Research Institute, School of Medicine, Universidad de Antioquia, Medellín, Colombia
  • Laura Juliana Prieto Química de Plantas Colombianas, Institute of Chemistry, Faculty of Exact and Natural Sciences, Universidad de Antioquia, Medellín, Colombia

DOI:

https://doi.org/10.1590/s2175-97902022e20822

Palavras-chave:

S-allyl cysteine, Caffeic acid, Hybrid, Chagas disease, Malaria disease, Modelling studies

Resumo

In order to overcome the challenges of discovering new antiprotozoal drugs, we synthesized a new class of hybrids based on S-allylCysteine Ester/Caffeic Acid Amide and evaluated four of them against Trypanosoma cruzi and Plasmodium falciparum. Hybrid 6 exhibited good activity on T. cruzi with an EC50 value of 5.45 µM, whereas hybrid 3 was active over P. falciparum with an EC50 of 18.08 µM. All hybrids displayed a good selectivity index on P. falciparum. Molecular docking computations indicated that several hybrids have good binding affinities towards the protozoa related enzymes (Cruzipain or Falcipain-2) when compared against current inhibitors. In silico studies showed that conjugates 1-3 and 6 fulfilled optimal ADME characteristics, suggesting them as safe alternatives for oral treatment of protozoal infections.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Alson SG, Jansen O, Cieckiewicz E, Rakotoarimanana H, Rafatro H, Degotte G, et al. In-vitro and in-vivo antimalarial activity of caffeic acid and some of its derivatives. J Pharm Pharmacol. 2018;70(10):1349-1356.

Borchhardt DM, Mascarello A, Chiaradia, LD, Nunes RJ. Oliva G. Yunes RA. et al. Biochemical evaluation of a series of synthetic chalcone and hydrazide derivatives as novel inhibitors of cruzain from Trypanosoma cruzi. J Braz Chem Soc. 2010;21(1):142-150.

Castrillón W, Herrera-R A, Prieto LJ, Conesa-Milián L, Carda M, Naranjo T, et al. Synthesis and in vitro evaluation of S-allyl cysteine ester - caffeic acid amide hybrids as potential anticancer agents. Iran J Pharm Res. 2019;18(4):1770-1789.

Chatelain E, Ioset JR. Drug discovery and development for neglected diseases: the DNDi model. Drug Des Devel Ther. 2011;5:175-181.

Chugh, M, Sundararaman V, Kumar S, Reddy VS, Siddiqui WA, Stuart K, et al. P. Protein complex directs hemoglobin- to-hemozoin formation in Plasmodium falciparum. Proc Natl Acad Sci USA. 2013;110(14):5392-5397.

Coa JC, Yepes A, Carda M, Conesa-Milián L, Upegui Y, Robledo SM, et al. Synthesis, In silico studies, antiprotozoal and cytotoxic activities of quinoline-biphenyl hybrids. ChemistrySelect. 2020;5(10):2918-2924.

Coppi A, Cabinian M, Mirelman D, Sinnis P. Antimalarial activity of allicin, a biologically active compound from garlic cloves. Antimicrob Agents Chemother. 2006;50(5):1731-1737.

De P, Bedos-Belval F, Vanucci-Bacquéa C, Baltas M. Cinnamic acid derivatives in tuberculosis, malaria and cardiovascular diseases - a review. Curr Org Chem. 2012;16(6):747-768.

Ditzinger F, Price DJ, Ilie AR, Köhl NJ, Jankovic S, Tsakiridou G, et al. Lipophilicity and hydrophobicity considerations in bio-enabling oral formulations approaches - a PEARRL review. J Pharm Pharmacol . 2019;71(4):464-482.

Duschak V, Couto A. Cruzipain, the major cysteine protease of trypanosoma cruzi: a sulfated glycoprotein antigen as relevant candidate for vaccine development and drug target. A review. Curr Med Chem. 2009;16(24):3174-202.

Duschak VG, Ciaccio M, Nassert JR, Basombrio MA. Enzymatic activity, protein expression, and gene sequence of cruzipain in virulent and attenuated Trypanosoma cruzi strains. J Parasitol 2001;87(5):1016-1022.

Ellman J, Brak K, Kerr D, Barrett K, Fuchi N, Debnath M. et al. Nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors as promising new leads for chagas disease chemotherapy. J Med Chem. 2010;53(4):1763-1773.

Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. Antimalarial drug discovery: Efficacy models for compound screening. Nat Rev Drug Discov. 2004;3(6):509-520.

Fujii N, Mallari JP, Hansell EJ, Mackey Z, Doyle P, Zhou YM, et al. Discovery of potent thiosemicarbazone inhibitors of rhodesain and cruzain. Bioorg Med Chem Lett. 2005;15(1):121-123.

Finney JD. Probit Analysis: Statistical Treatment of the Sigmoid Response Curve, 3rd ed.; Cambridge University Press: Cambridge, UK, 1978. p. 550.

Foroutan-Rad M, Hazrati TK, Khademvatan S. Antileishmanial and Immunomodulatory Activity of Allium sativum (Garlic): A Review. J Evid Based Complementary Altern Med. 2017;22(1):141-155.

García E, Ochoa R, Vásquez I, Conesa-Milián L, Carda M, Yepes A, et al. Furanchalcone-biphenyl hybrids: synthesis, in silico studies, antitrypanosomal and cytotoxic activities. Med Chem Res. 2019;28:608-622.

Gupta A, Saha P, Descôteaux C, Leblanc V, Asselin E, Bérubé G. Design, synthesis and biological evaluation of estradiol-chlorambucil hybrids as anticancer agents. Bioorg Med Chem Lett . 2010;20(5):1614-1618.

Gupta Ch, Singh S, Khan A. Molecular docking studies of antimalarial drug and its analogues against falcipain-2 protein. Inter J Biosol. 2011;1:16-21.

Hans-Hartwig O, Tanja S. Cysteine proteases and their inhibitors. Chem Rev. 1997;97(1):133-172.

Hung CC, Tsai WJ, Kuo LM, Kuo YH. Evaluation of caffeic acid amide analogues as anti-platelet aggregation and anti- oxidative agents. Bioorg Med Chem. 2005;13(5):1791-1797.

Ivasiv V, Albertini C, Gonçalves AE, Rossi M, Bolognesi ML. Molecular hybridization as a tool for designing multitarget drug candidates for complex diseases. Curr Top Med Chem. 2019;19(19):1694-1711.

Keenan M, Chaplin JH. A new era for chagas disease drug discovery? Prog Med Chem. 2015;54:185-230.

Kerr ID, Lee JH, Pandey K, Harrison A, Sajid M, Rosenthal PJ, et al. Structures of falcipain-2 and falcipain-3 bound to small molecule inhibitors: implications for substrate specificity. J Med Chem . 2009;52(3):852-857.

Kunakbaeva Z, Carrasco R, Rozas I. An approximation to the mechanism of inhibition of cystein proteases: nucleophilic sulphur addition to Michael acceptors type compounds. J Mol Struc-THEOCHEM. 2003;626(1):209-216.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1-3):3-25.

Londoño F, Cardona W, Alzate F, Cardona F, Vélez ID, Upegui Y, et al. Antiprotozoal activity and cytotoxicity of extracts from Solanum arboreum and S. ovalifolium (Solanaceae). J Med Plants Res. 2016;10(8):100-107.

Machin JM, Kantsadi AL, Vakonakis I. The complex of Plasmodium falciparum falcipain-2 protease with an (E)- chalcone-based inhibitor highlights a novel, small, molecule- binding site. Malar J. 2019;18:388-401.

Meunier B. Hybrid molecules with a dual mode of action: dream or reality? Acc Chem Res. 2008;41(1):69-77.

Morris GM, Goodshell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al. Docking using a lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem. 1998;19(14):1639-1662.

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem . 2009;30(16):2785-2791.

McGrath ME, Eakin AE, Engel JC, McKerrow JH, Craik CS, Fletterick RJ. The crystal structure of cruzain: a therapeutic target for Chagas’ disease. J Mol Biol. 1995;247(2):251-259.

McKerrow JH, Caffrey C, Kelly B, Loke P, Sajid M. Proteases in parasitic diseases. Annu Rev Pathol. 2006;1:497-536.

Nkhoma S, Molyneux M, Ward S. In vitro antimalarial susceptibility profile and prcrt/pfmdr-1 genotypes of Plasmodium falciparum field isolates from Malawi. Am J Trop Med Hyg. 2007;76(6):1107-1112.

Nok AJ, Williams S, Onyenekwe PC. Allium sativum- induced death of African trypanosomes. Parasitol Res. 1996;82(7):634-637.

Otero E, García E, Palacios G, Yepes LM, Carda M, Agut R, et al. SM. Triclosan-caffeic acid hybrids: Synthesis, leishmanicidal, trypanocidal and cytotoxic activities. Eur J Med Chem . 2017;141:73-83.

Otero E, Robledo S, Díaz S, Carda M, Muñoz D, Paños J, et al. Synthesis and leishmanicidal activity of cinnamic acid esters: structure-activity relationship. Med Chem Res . 2014;23:1378-1386.

Podlewska S, Kafel R. MetStabOn-Online platform for metabolic stability predictions. Int J Mol Sci. 2018;19(4):1040- 1056.

Provencher-Mandeville J, Descôteaux C, Mandal SK, Leblanc V, Asselin E, Bérubé G. Synthesis of 17beta- estradiol-platinum(II) hybrid molecules showing cytotoxic activity on breast cancer cell lines. Bioor Med Chem Lett. 2008;18(7):2282-2287.

Rajan P, Vedernikova I, Cos P, Berghe DV, Augustyns K, Haemers A. Synthesis and evaluation of caffeic acid amides as antioxidants. Bioorg Med Chem Let. 2001;11(2):215-257.

Santos MM, Moreira R. Michael acceptors as cysteine protease inhibitors. Mini Rev Med Chem. 2007;7(10):1040-1050.

Shapiro A, Nathan HC, Hutner SH, Garofalo J, McLaughlin SD, Rescigno D, et al. In Vivo and In Vitro Activity by Diverse Chelators against Trypanosoma brucei brucei. J Protozool. 1982;29(1):85-90.

Siles R, Chen SE, Zhou M, Pinney KG, Trawick ML. Design, synthesis, and biochemical evaluation of novel cruzain inhibitors with potential application in the treatment of Chagas’ disease. Bioorg Med Chem Lett . 2006;16(16):4405-4409.

Singh A, Kalamuddin M, Mohmmed A, Malhotra P, Hoda N. Quinoline-triazole hybrids inhibit falcipain-2 and arrest the development of Plasmodium falciparum at the trophozoite stage. RSC Adv. 2019;9(67):39410-39422.

Siqueira-Neto JL, Debnath A, McCall LI, Bernatchez JA, Ndao M, Reed SL, et al. Cysteine proteases in protozoan parasites. PLoS Negl Trop Dis. 2018;12(8):6512-6524.

Son S, Lewis BA. Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: Anti-protozoal S-allylCysteine Ester/Caffeic Acid Amide Hybrids structure-activity relationship. J Agric Food Chem. 2002;50(3):468-472.

Tasdemir D, Kaiser M, Brun R, Yardley V, Schmidt TJ, Tosun F, et al. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure- activity relationship studies. Antimicrob Agents Chemother . 2006;50(4):1352-1364.

Tiwari HK, Kumar P, Kumar K, Jatana N, Garg S, Narayanan L, et al. In vitro antimalarial evaluation of piperidine- and piperazine-based chalcones: inhibition of falcipain-2 and plasmepsin II hemoglobinases activities from Plasmodium falciparum. ChemistrySelect . 2017;2(25):7684-7690.

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem . 2010;31(2):455-461.

Tsogoeva SB. Recent progress in the development of synthetic hybrids of natural or unnatural bioactive compounds for medicinal chemistry. Mini Rev Med Chem . 2010;10(9):773-793.

Viegas-Junior C, Danuello A, Bolzani VD, Barreiro E, Fraga C. Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem. 2007:14(17):1829-1852.

Vieira RP, Santos VC, Ferreira RS. Structure-based Approaches Targeting Parasite Cysteine Proteases. Curr Med Chem . 2019;26(23):4435-4453.

Vijayaraghavan Sh, Mahajan S. Docking, synthesis and antimalarial activity of novel 4-anilinoquinoline derivatives. Bioorg Med Chem Lett . 2017;27(8):1693-1697.

World Health Organization (WHO). Neglected tropical diseases. 2018a. Available online: Available online: http://www.who.int/neglected_diseases/diseases/en/ (accessed on 20 June 2020)

» http://www.who.int/neglected_diseases/diseases/en/

World Health Organization (WHO). World Malaria Report 2018. 2018b. Available online: Available online: https://www.who.int/malaria/ publications/world-malaria-report-2018/report/en/ (accessed on 04 March 2020).

» https://www.who.int/malaria/ publications/world-malaria-report-2018/report/en/

World Health Organization (WHO) Chagas disease (American Trypanosomiasis). 2019. http://www.who.int/ news-room/fact-sheets/detail/chagasdisease-(american- trypanosomiasis) (Accessed 04 March 2020).

» http://www.who.int/ news-room/fact-sheets/detail/chagasdisease-(american- trypanosomiasis)

Yang Z, Fonović M, Verhelst SH, Blum G, Bogyo M. Evaluation of alpha,beta-unsaturated ketone-based probes for papain-family cysteine proteases. Bioorg Med Chem . 2009;17(3):1071-1078.

Downloads

Publicado

2022-12-23

Edição

Seção

Original Article

Como Citar

S-allylCysteine Ester/Caffeic Acid Amide Hybrids as Promising Antiprotozoal Candidates: Synthesis, Biological Evaluation and Molecular Modeling Studies. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e20822

Dados de financiamento