Effects of polyvinylpyrrolidone and poly (ethylene glycol) on preparation of ibuprofen pharmaceutical cocrystal

Autores

  • Xintong Yang College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, China
  • Yang Chen College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, China
  • Ning Qiao College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, China, Tangshan Key Laboratory of Functional Polymer, Tangshan, China https://orcid.org/0000-0003-3422-0821

DOI:

https://doi.org/10.1590/s2175-97902022e18768

Palavras-chave:

Pharmaceutical cocrystal, Cocrystal preparation, Polymer, Ibuprofen, Nicotinamide, Saccharin

Resumo

In this study, we investigated the effects of polymers on the pharmaceutical cocrystal formation process. Ibuprofen (IBU) was selected as the active pharmaceutical ingredient (API), nicotinamide (NIC) and saccharin (SAC) as the cocrystal coformer (CCF), ethanol/water as the solvent, polyvinylpyrrolidone (PVP) and poly (ethylene glycol) (PEG) as the representative polymers. We prepared IBU-NIC and IBU-SAC cocrystals in ethanol-water cosolvent in the absence or presence of polymers. Cocrystal screening products were characterized by FTIR, DSC, PXRD, and HPLC. The results showed that the mixture of IBU and IBU-NIC cocrystal can be prepared in ethanol-water cosolvent without polymers. The addition of PVP facilitates the formation of pure IBU-NIC cocrystal; however, no cocrystal was formed in PEG solutions. SAC could not cocrystallize with IBU in the ethanol-water solvent in the absence of polymers. Neither PVP nor PEG could facilitate the formation of the IBU-SAC cocrystal.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Aakeröy C, Salmon D. Building co-crystals with molecular sense and supramolecular sensibility. Cryst Eng Comm. 2005;7:439-448.

Alhalaweh A, Ali HRH, Velaga SP. Effects of polymer and surfactant on the dissolution and transformation profiles of cocrystals in aqueous media. CrystGrowth Des. 2014;14(2):643-648.

Alhalaweh A, Roy L, Rodríguez-Hornedo N, Velaga S. pH-Dependent Solubility of Indomethacin-Saccharin and Carbamazepine-Saccharin Cocrystals in Aqueous Media. Mol Pharmaceutics. 2012;9(9):2605-2612.

Basavoju S, Boström D, Velaga S. Indomethacin- Saccharin Cocrystal: Design, Synthesis and Preliminary Pharmaceutical Characterization. Pharm Res. 2008;25(3): 530-541.

Berry DJ, Seaton CC, Clegg W, Harrington RW, Coles SJ, Horton PN, et al. Applying Hot-Stage Microscopy to Co-Crystal Screening: A Study of Nicotinamide with Seven Active Pharmaceutical Ingredients. Cryst Growth Des. 2008;8(5):1697-1712.

Bis J, Vishweshwar P, Weyna AD, Zaworotko M. Hierarchy of supramolecular synthons: persistent hydroxyl···pyridine hydrogen bonds in cocrystals that contain a cyano acceptor. Mol Pharmaceutics . 2007;4(3):401-416.

Chow SF, Chen M, Shi L, Chow AH, Sun CC. Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharm Res . 2012;29(7):1854-1865.

D’Souza AJ, Schowen R, Topp E. Polyvinylpyrrolidone-drug conjugate: synthesis and release mechanism. J Control Rel. 2004;94(1):91-100.

Damian F. Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14.Eur J Pharm Sci. 2000;10(4):311-322.

Greco K, Bogner R. Solution-mediated phase transformation: significance during dissolution and implications for bioavailability. J Pharm Sci. 2012;101(9):2996-3018.

Guo M, Wang K, Hamill N, Lorimer K, Li M. Investigating the influence of polymers on supersaturated flufenamic acid cocrystal solutions. Mol Pharm. 2016;13(9):3292-3307.

Hashib S, Anuar N, Jamburi N, Ahmad N, Rahim S. Screening for Ibuprofen-Sachharin Co-Crystal Formation in Wet Milling. Appl Mech Mater. 2015;745-755:1002-1006.

Hendriksen B, Grant D, Meenan P, Green D. Crystallisation of paracetamol (acetaminophen) in the presence of structurally related substances. J CrystGrowth. 1998;183(4):629-640.

Higuchi T, Kuramoto R. Study of possible complex formation between macromolecules and certain pharmaceuticals. II. Polyvinylpyrrolidone with p-aminobenzoic acid, aminopyrine, benzoic acid, salicylic acid, p-hydroxybenzoic acid, m-hydroxybenzoic acid, citric acid, and phenobarbit. J Am Pharm Assoc. 1954;43(7):398-401.

Higuchi T, Lach JL. Study of possible complex formation between macromolecules and certain pharmaceuticals. III. Interaction of polyethylene glycols with several organic acids. J Am Pharm Assoc . 2010;43(8):465-470.

Huang N, Rodríguez-Hornedo N. Engineering cocrystal solubility, stability, and pH(max) by micellar solubilization. J Pharm Sci . 2011;100(12):5219-5234.

Karavas E, Ktistis G, Xenakis A, Georgarakis E. Effect of hydrogen bonding interactions on the release mechanism of felodipine from nanodispersions with polyvinylpyrrolidone. Eur J Pharm Biopharm. 2006;63(2):103-114.

Lee M, Wang I, Kim M, Kim P, Song K, Chun N, et al. Controlling the polymorphism of carbamazepine-saccharin cocrystals formed during antisolvent cocrystallization using kinetic parameters. Korean J Chem. 2015;32(9):1910-1917.

Li M, Qiao N, Wang K. Influence of sodium lauryl sulfate and tween 80 on carbamazepine-nicotinamide cocrystal solubility and dissolution behaviour. Pharmaceutics. 2013;5(4): 508-524.

McNamara DP, Childs SL, Giordano J, Iarriccio A, Cassidy J, Shet MS, et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res . 2006;23(8):1888-1897.

Miroshny I, Mirza S, Sandler N. Pharmaceutical co-crystals- an opportunity for drug product enhancement. Expert OpinDrug Deliv. 2009;6(4):333-341.

Molyneux P, Frank H. The Interaction of Polyvinylpyrrolidone with Aromatic compounds in aqueous solution. part i. thermodynamics of the binding equilibria and interaction forces1. J Am Chem Soc. 1961;83(15):351-370.

Mooter G, Wuyts M, Blaton N, Busson R, Grobet P, Augustijins P, et al. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur J Pharm Sci . 2001;12(3):261-269.

Qiao N, Li M, Schlindwein W, Malek N, Davies A, Garry T. Pharmaceutical cocrystals: An overview. Int J Pharm. 2011;419(1-2):1-11.

Qiao N, Wang K, Schlindwein W, Davies A, Li M. In situ monitoring of carbamazepine-nicotinamide cocrystal intrinsic dissolution behaviour. Eur J PharmBiopharm. 2013;83(3):415-426.

Qiu S, Lai J, Guo M, Wang K, Lai X, Desai U,et al. Role of polymers in solution and tablet based carbamazepine cocrystal formulations. Cryst Eng Comm. 2016;18(15):2664- 2678.

Qiu S, Li M. Effects of coformers on phase transformation and release profiles of carbamazepine cocrystals in hydroxypropyl methylcellulose based matrix tablets. IntJ Pharm. 2015;479(1):118-128.

Rager T, Hilfiker R. Cocrystal Formation from Solvent Mixtures. Cryst Growth Des . 2010;10(7):3237-3241.

Shiraki K, Takata N, Takano R, Hayashi Y, Terada K. Dissolution improvement and the mechanism of the improvement from cocrystallization of poorly water-soluble compounds. Pharm Res . 2008;25(11):2581-2592.

Sun X, Yin Q, Ding S, Shen Z, Bao Y, Gong J,et al. Solid- liquid phase equilibrium and ternary phase diagrams of ibuprofen-nicotinamide cocrystals in ethanol and ethanol/ water mixtures at (298.15 and 313.15) K.Chem Eng Data. 2015;60(4):1166-1172.

Vishweshwar P, McMahon J, Bis J, Zaworotko M. Pharmaceutical co-crystals. J Pharm Sci . 2006;95(3):499- 516.

Zalipsky S. Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv Drug Delivery Rev. 1995;16(2-3):157-182.

Downloads

Publicado

2023-02-06

Edição

Seção

Original Article

Como Citar

Effects of polyvinylpyrrolidone and poly (ethylene glycol) on preparation of ibuprofen pharmaceutical cocrystal. (2023). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e18768

Dados de financiamento