Comparative application of biological and ninhydrinderivatized spectrophotometric assays in the evaluation and validation of amikacin sulfate injection

Authors

  • Edebi Nicholas. Vaikosen Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria https://orcid.org/0000-0002-2413-6127
  • Samuel Ogheneruona Origbo Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria
  • Dipreye Ere Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria
  • Prosper Odaderia Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria

DOI:

https://doi.org/10.1590/s2175-97902022e201185

Keywords:

Biological activity, Potency, Derivatizaton, Aminoglycosides, Molar absorptivity, Ninhydrin

Abstract

Instrumental techniques are preferred over bioassay methods for antibiotic quantification mainly due to speed and ability to quantify metabolites in biological samples; however, the potency and biological activity of these drugs cannot be assessed. Two methods - agar well diffusion (bio-assay) and spectrophotometric methods were used to evaluate amikacin sulfate injection. Agar plates were inoculated with S. aureus inoculum; zones of inhibition from its susceptibility to amikacin were obtained, while spectrophotometric absorption at 650 nm of ninhydrin- derivatized amikacin in phosphate buffer (pH 8) was measured. Methods performance showed linearity from 1 - 16 μgmL-1 (bioassay, r = 0.9994) and 10-50 μgmL-1 (spectrophotometric, r = 0.9998). Molar absorptivity was 2.595 x 104 Lmol-1cm-1. Limits of detection and quantification were 1.07 and 3.24 μgmL-1 respectively for bioassay method, while corresponding values for spectrophotometric method were 0.98 and 2.97 μg mL-1. Relative standard deviations were ≤ 2.0% for both methods, with recoveries from 95.93 - 100.25%. Amikacin in brands ranged from 97.53 ± 2.68 to 100.84 ± 1.82%, student’s t-test was ≤ 2.78 (n = 4) with respect to label claim for both methods. Experimental paired t-test (t = 2.07; n = 4) and F-test (F = 3.94; n = 4) values indicated no significant difference between both methods, hence comparable and can jointly be used in quality control assessment of antibiotics.

Downloads

Download data is not yet available.

References

Al-Sabha NT. Spectrophotometric determination of amikacin sulphate via charge transfer complex formation reaction using tetracyanoethylene and 2,3-dichloro-5,6-dicyano-1,4- benzoquinone reagents. Arab J Sci Eng. 2010;35(2A):27-40.

Anyakudo F, Adams EE, Schepdel A. Analysis of amikacin, gentamicin and tobramycin by thin layer chromatography flame ionization detection. Microchem J. 2020;157(9):105032. doi: 10.1007/s10337-019-03849-z.

» https://doi.org/10.1007/s10337-019-03849-z.

Baietto L, D’Avolio A, De Rosa FG, Garazzino S, Michelazzo M, Ventimiglia G, et al. Development and validation of a simultaneous extraction procedure for HPLC- MS quantification of daptomycin, amikacin, gentamicin, and rifampicin in human plasma. Anal Bioanal Chem. 2010;396(2):791-798.

Bauman WR. Microbiology: with diseases by body system (5th ed.). Published by Pearson (2018). ISBN 978-0-321-91855.

Bohm DA, Stachel SC, Gowik P. Confirmatory method for the determination of streptomycin in apples by LC-MS/MS. Anal Chim Acta. 2010;672(1-2):103-106. doi.org/10.1016/j. aca.2010.03.056.

» https://doi.org/doi.org/10.1016/j. aca.2010.03.056

British Pharmacopoeia. The British Pharmacopoeia Commission, Monographs on Medicinal and Pharmaceutical Substances Market Towers 1 Nine Elms Lane London SW8 5NQ, 2015. I & II, 3407-3413; 6433-6437.

Cazedey LCE, Salgado NRH. Development and validation of a microbiological agar assay for determination of Orbifloxacin in pharmaceutical preparations. Pharmaceutics. 2011;3(3):572-581. doi: 10.3390/pharmaceutics3030572.

» https://doi.org/10.3390/pharmaceutics3030572.

Cazedey LCE, Salgado NRH. A novel and rapid microbiological assay for ciprofloxacin Hydrochloride. J Pharm Anal. 2013;3(5):382-386.

CDC. Antibiotic Resistance Threats in the United States. Atlanta, GA: U.S. Department of Health and Human Services, Centre for Disease and Control; 2019. http://www.cdc.gov/DrugResistance/Biggest-Threats.html doi:http://dx.doi.org/10.15620/cdc:82532.

» https://doi.org/http://dx.doi.org/10.15620/cdc:82532.

» http://www.cdc.gov/DrugResistance/Biggest-Threats.html

Dafale AN, Semwal PU, Rajput KR, Singh NG. Selection of appropriate analytical tools to determine the potency and bioactivity of antibiotics and antibiotic resistance. J Pharm Anal . 2016;6(4):207-213. doi: 10.1016/j.jpha.2016.05.006.

» https://doi.org/10.1016/j.jpha.2016.05.006.

Derayea SM, Attia TZ, Elnady D. Development of spectrofluorimetric method for etermination of certain antiepileptic drugs through condensation with ninhydrin and phenyl acetaldehyde. Spectrochim Acta A Mol Biomol Spectrosc. 2018;204(11):48-54. doi: 10.1016/j.saa.2018.06.027.

» https://doi.org/10.1016/j.saa.2018.06.027.

Friedman M. Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to Agricultural and Biomedical Sciences. J Agric Food Chem. 2004;52(3):385-406. doi.org/10.1021/jf03090p.

» https://doi.org/doi.org/10.1021/jf03090p

Heatley NG. A method for the assay of penicillin. Biochem J. 1944;38(1):61-65.

Hubicka U, Krzek J, Woltynska H, Stachacz B. Simultaneous identification and quantitative determination of selected aminoglycoside antibiotics by thin-layer chromatography and densitometry. J AOAC Int. 2009;92(4)1068-1075. doi: 10.1093/jaoac/92.4.1068

» https://doi.org/10.1093/jaoac/92.4.1068

Huidobro AL, Garcia A, Barbas C. Rapid analytical procedure for neomycin determination in ointments by CE with direct UV detection. J Pharm Biomed Anal. 2009;49(5):1303-1307.

ICH. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human use, ICH Harmonized Tripartite Guideline, ICH Q2A. Text on validation of analytical procedures, November 2005. (Accessed: 22 July, 2020).

Kalyani L, Rao NVC. Stability indicating RP-HPLC method development and validation of cefepime and amikacin in pure and pharmaceutical dosage forms. Braz J Pharm Sci. 2018;54(3):1-9. doi.org/10.1590/s2175-97902018000317258.

» https://doi.org/doi.org/10.1590/s2175-97902018000317258

Karthik VV. Excipient used in the formulation of tablets. Res Rev: J Chem. 2016;5(2):143-154.

Kaya SE, Filazi A. Determination of antibiotic residues in milk samples. Kafkas Universitesi Veteriner Fakultesi Dergisi. 2010:16(Suppl-A):S31-S35.

Korany ATM, Haggag SR, Ragab AM, Elmallah AO. Liquid chromatographic determination of amikacin sulphate after pre-column derivatization. J Chromatogr Sci. 2014;52(8):837- 847. doi:10.1093/chromsci/bmt126.

» https://doi.org/10.1093/chromsci/bmt126

McHugh LM. Standard error: meaning and interpretation. Biochem Med. 2008:18(1):1-5. https://www.biochemia- medica.com/en/journal/18/1/10.11613/BM.2008.002

» https://www.biochemia- medica.com/en/journal/18/1/10.11613/BM.2008.002

Miller JC, Miller JN. Statistics and Chemometrics for Analytical Chemistry, 5th edition. Pearson Education Limited: Harlow, England. 2005.

Mughal RUU, Dayo A, Ghoto AM, Lal M, Arain IM, Parveen R, et al. Quantitative determination of amikacin sulfate using vanillin from pure and commercial brands available in Pakistan. J Young Pharm. 2015;8(1):28-32. doi: 10.5530/jyp.2016.1.7.

» https://doi.org/10.5530/jyp.2016.1.7.

Omar AM, Nagy MD, Hammad AM, Aly AA. Highly sensitive spectrofluorimetric method for determination of certain aminoglycosides in pharmaceutical formulations and human plasma. AAPS Pharm Sci Tech. 2013;14(2):828-837. doi: 10.1208/s12249-013-9969-6.

» https://doi.org/10.1208/s12249-013-9969-6.

Omar AM, Hammad AM, Nagy MD, Aly AA. Development of spectrofluorimetric method for determination of certain aminoglycoside drugs in dosage forms and human plasma through condensation with ninhydrin and phenyl acetaldehyde. Spectrochim Acta A Mol Biomol Spectrosc . 2015;136(2)1760-1766. doi: 10.1016/j.saa.2014.10.079.

» https://doi.org/10.1016/j.saa.2014.10.079.

Ovalles FJ, Gallignani M, Brunetto RM, Rondon AR, Ayala C. Reagent-free determination of amikacin content in amikacin sulfate injections by FTIR derivative spectroscopy in a continuous flow system. J Pharm Anal . 2014;4(2):125-131. doi: 10.1016/j.jpha.2013.08.001.

» https://doi.org/10.1016/j.jpha.2013.08.001.

Peraman R, Reddy YP. Application of spectral studies in pharmaceutical product development: (Basic approach with illustrated examples). Chapter 1, UV-Visible Spectroscopy. pp 1- 43. PharmaMed Press/BSP Books. 4-4-309/316, Giriraj Lane Sultan Bazar, Hyderabad - 500 095. Andhra Pradesh, INDIA. 2019.

Richmond D. The real consequences of fake medicines. Project Syndicate. 2020. https://www.project-syndicate.org/ commentary/africa-substandard-fake-medicine-by-david- richmond-2020-01?barrier=accesspaylog (Accessed 14 August, 2020).

» https://www.project-syndicate.org/ commentary/africa-substandard-fake-medicine-by-david- richmond-2020-01?barrier=accesspaylog

Shrivastava A, Gupta VB. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci. 2011;2(1):15-21.

Solano RGA, Pereira SCML, Leonel VNF, Nunan EA. Development of agar diffusion method for dosage of gramicidin. Braz J Pharm Sci . 2011;47(3):565-572.

Surya TG, Gurupadayya BM, Venkata SK. Spectrophotometric method for the determination amikacin in pure and pharmaceutical dosage form. Int J Curr Pharm Res. 2018;10(1):38-42. doi. 10.22159/ijcpr.2018v10i1.24703.

» https://doi.org/10.22159/ijcpr.2018v10i1.24703.

Ullah H, Ali S. Classfication of anti-bacterial agents and their functions. 2017. doi: 10.5772/intechopen.68695. https://www. intechopen.com/books/antibacterial-agents/classification- of-anti- bacterial-agents-and- their-functions (Accessed 29 June, 2020).

» https://doi.org/10.5772/intechopen.68695

» https://www. intechopen.com/books/antibacterial-agents/classification- of-anti- bacterial-agents-and- their-functions

United States Pharmacopoeia. 41.ed. Rockville: The United States Pharmacopeial Convention. 2018. p.103-109.

Usmani M, Ahmed S, Sheraz AM, Ahmad I. Development and validation of a pre-column derivatization HPLC method for the assay of amikacin sulfate in pure and parenteral dosage forms. Curr Pharm Anal. 2019;15(5):511-520. doi.or g/10.2174/1573412914666180314121213.

» https://doi.org/doi.or g/10.2174/1573412914666180314121213

Vaikosen NE, Bioghele J, Worlu CR, Ebeshi UB. Spectroscopic determination of two beta- blockers - atenolol and propanolol by oxidative derivatization using potassium permanganate in alkaline medium. Rev Anal Chem. 2020;39(1):56-64. doi.org/10.1515/revac-2020-0103.

» https://doi.org/doi.org/10.1515/revac-2020-0103

Vaikosen NE, Ebeshi UB, Worlu CR. Spectroscopic fingerprinting of aminoglycosides and determination of neomycin sulphate through oxidative ion-pair complex formation using ammonium molybdate. Curr Pharm Anal. 2019;15(5):487-496. doi: 10.2174/1573412914666180502124906.

» https://doi.org/10.2174/1573412914666180502124906.

Wargo AK, Edwards DJ. Aminoglycoside-Induced Nephrotoxicity. J Pharm Pract. 2014;27(6):573-577. doi: 10.1177/0897190014546836.

» https://doi.org/10.1177/0897190014546836.

World Health Organization (WHO). WHO model list of essential medicines. Geneva: Switzerland. October 2013. (Accessed 22 April, 2020).

World Health Organization (WHO). WHO Global Surveillance and Monitoring System for substandard and falsified medical products (2017). https://www.who.int/medicines/regulation/ssffc/publications/GSMS_Report_ layout.pdf?ua=1 (Accessed 14 August, 2020).

» https://www.who.int/medicines/regulation/ssffc/publications/GSMS_Report_ layout.pdf?ua=1

Yu ZC, He ZY, Fu NG, Xie YH, Gan EW. Determination of kanamycin A, amikacin and tobramycin residues in milk by capillary zone electrophoresis with post-column derivatization and laser-induced fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;877(3)333-338. doi.org/10.1016/j.jchromb.2008.12.011.

» https://doi.org/doi.org/10.1016/j.jchromb.2008.12.011

Yola LM, Atar N, Eren T. Determination of amikacin in human plasma by molecular imprinted SPR nanosensor. Sens Actuators B. 2014;198(7)70-76. doi.org/10.1016/j. snb.2014.02.107.

» https://doi.org/doi.org/10.1016/j. snb.2014.02.107

Zuluaga FA, Agudelo M, Rodriguez AC, Vesga O. Application of microbiological assay to determine pharmaceutical equivalence of generic intravenous antibiotics. BMC Clin Pharm. 2009;(1)1-11. doi:10.1186/1472-6904-9-1.

» https://doi.org/10.1186/1472-6904-9-1

Downloads

Published

2023-02-06

Issue

Section

Original Article

How to Cite

Comparative application of biological and ninhydrinderivatized spectrophotometric assays in the evaluation and validation of amikacin sulfate injection. (2023). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e201185