In vitro and ex vivo antiplasmodial activity of 1-(3-benzyloxy-4-methoxy-phenyl)-3-(3,4,5-trimethoxy-phenyl)-propan-1-one) against circulating strains of Plasmodium spp. in the state of Rondônia, Brazil

Authors

  • Vanessa Margarida Vicentini Centro Universitário Aparício Carvalho (FIMCA), Rondônia, Brazil; Plataforma de Bioensaios de Malária e Leishmaniose (PBML) da Fundação Oswaldo Cruz-Rondônia (FIOCRUZ-RO), Brazil
  • Welington da Silva Paula do Nascimento Plataforma de Bioensaios de Malária e Leishmaniose (PBML) da Fundação Oswaldo Cruz-Rondônia (FIOCRUZ-RO), Brazil; Centro Universitário São Lucas (CUSL), Rondônia, Brazil
  • Marcinete Latorre Almeida Plataforma de Bioensaios de Malária e Leishmaniose (PBML) da Fundação Oswaldo Cruz-Rondônia (FIOCRUZ-RO), Brazil; Universidade Federal de Rondônia -Programa de PósGraduação em Biologia Experimental-UNIR, Brazil
  • Daniel Sol Sol de Medeiros Plataforma de Bioensaios de Malária e Leishmaniose (PBML) da Fundação Oswaldo Cruz-Rondônia (FIOCRUZ-RO), Brazil; Universidade Federal de Rondônia -Programa de PósGraduação em Biologia Experimental-UNIR, Brazil
  • Ana Paula de Azevedo Plataforma de Bioensaios de Malária e Leishmaniose (PBML) da Fundação Oswaldo Cruz-Rondônia (FIOCRUZ-RO) https://orcid.org/0000-0003-4005-6263
  • Joana D 'Arc Neves Costa Centro de Pesquisa em Medicina Tropical (CEPEM), Rondônia, Brazil7 Rede de Biodiversidade e Biotecnologia da Amazônia Legal Programa de Pós-Graduação Bionorte, Brazil
  • Dhélio Batista Pereira Centro de Pesquisa em Medicina Tropical (CEPEM), Rondônia, Brazil7 Rede de Biodiversidade e Biotecnologia da Amazônia Legal Programa de Pós-Graduação Bionorte, Brazil
  • Mauro Shugiro Tada Centro de Pesquisa em Medicina Tropical (CEPEM), Rondônia, Brazil
  • Leonardo de Azevedo Calderon Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio) da Fundação Oswaldo Cruz-Rondônia (FIOCRUZ-RO), Brazil; Universidade Federal de Rondônia -Programa de PósGraduação em Biologia Experimental-UNIR, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal Programa de Pós-Graduação Bionorte, Brazil
  • Carolina Bioni Garcia Teles Plataforma de Bioensaios de Malária e Leishmaniose (PBML) da Fundação Oswaldo Cruz-Rondônia (FIOCRUZ-RO), Brazil; Universidade Federal de Rondônia -Programa de PósGraduação em Biologia Experimental-UNIR, Brazil; Centro Universitário São Lucas (CUSL), Rondônia, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal Programa de Pós-Graduação Bionorte, Brazil

DOI:

https://doi.org/10.1590/s2175-97902022e20453

Keywords:

Malaria, P. falciparum, P. vivax, Trimethoxy-phenyl

Abstract

Malaria is a disease caused by Plasmodium spp. protozoa. The ability of Plasmodium to develop resistance to current antimalarial drugs makes the study of chemotherapeutic alternatives extremely important. This study aimed to evaluate the antimalarial activity of compound 3286938 (1-(3-benzyloxy-4-methoxy-phenyl)-3-(3,4,5-trimethoxy-phenyl)-propan-1-one), which presents in its structure a 3,4,5-trimethoxyphenyl group, in vitro, using the W2 strain of P. falciparum and against circulating strains of P. vivax and P. falciparum from the state of Rondônia. The compound 3286938 obtained an IC50 of 24.4 µM against the W2 strain of P. falciparum, and against the circulating strains, it presented a median (MD)=38.7 µM for P. vivax and MD=6.7 µM for P. falciparum. As for toxicity, 3286938 showed CC50 > 500 µM for VERO and HepG2 strains with a selectivity index greater than 12.9, a ratio calculated for P. falciparum and P. vivax regarding Vero and HepG2 cells. The compound was not considered hemolytic in in vitro assays, thus indicating the specificity of its antiplasmodial action. Based on the results presented, and considering the unprecedented character of the compound, it can be concluded that 3286938 was shown to be promising for complementary in vitro and in vivo studies aiming to produce effective antiplasmodial action.

Downloads

Download data is not yet available.

References

Aguiar ACC, Pereira DB, Amaral NS, De Marco L, Krettli AU. Plasmodium vivax and Plasmodium falciparum ex vivo susceptibility to anti-malarials and gene characterization in Rondônia, West Amazon, Brazil. Malar J. 2014;13(73):1-7.

Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371(5):411-423.

Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Situação epidemiológica da malária no Brasil. Bol Epidemiológico. 2015;46(25).

Brega S, Meslin B, De Monbrison F, Severini C, Gradoni L, Udomsangpetch R, et al. Identification of the Plasmodium vivax mdr-like gene (pvmdr1) and analysis of single-nucleotide polymorphisms among isolates from different areas of endemicity. J Infect Dis. 2005;191(2):272-277.

Calderon LA, Silva-Jardim I, Zuliani JP, Silva AA, Ciancaglini P, Silva LHP, et al. Amazonian biodiversity: a view of drug development for leishmaniasis and malaria. J Braz Chem Soc. 2009;20(6):1011-1023.

Calvo-Calle JM, Moreno A, Eling WM, Nardin EH. In vitro development of infectious liver stages of P. yoelii and P. berghei malaria in human cell lines. Exp Parasitol. 1994;79(3):362-373.

Casertano M, Menna M, Fattorusso C, Basilico N, Parapini S, Persico M, et al. Antiplasmodial activity of p-substituted benzyl thiazinoquinone derivatives and their potential against parasitic infections. Molecules. 2020;25(7):1530.

Dewick PM. Medicinal Natural Products: a biosynthetic approach, 3rd Edition. Mas York. JWS. 2009:546.

Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med . 2009;361(5):455-467.

Facundo VA, Pollli AR, Rodrigues RV, Militão JSLT, Stabelli RG, Cardoso CT. Constituintes químicos fixos e voláteis de caules e frutos de Piper tuberculatum Jacq. e de raízes de P. hispidum. Acta Amaz. 2008;38(4):743-748.

Ferreira MGPR, Kaiano AM, Silva-Jardim I, Silva TO, Zuliani JP, Facundo VA, et al. Antileishmanial activity of 3-(3,4,5-trimethoxyphenyl) propanoic acid purified from Amazonian Piper tuberculatum Jacq., Piperaceae, fruits. Rev Bras Farmacogn. 2010;20(6):1003-1006.

Guzman JD. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules . 2014;19(12):19292-19349.

Imwong M, Hien TT, Thuy-Nhien NT, Dondorp AM, White NJ. Spread of a single multidrug resistant malaria parasite lineage (PfPailin) to Vietnam. Lancet Infect Dis. 2017;17(10):1022-1023.

Kanaani J, Ginsburg H. Effects of cinnamic acid derivatives on in vitro growth of Plasmodium falciparum and on the permeability of the membrane of malaria-infected erythrocytes. Antimicrob Agents Chemother. 1992;36(5):1102-1108.

Kaushik J, Gomber S, Dewan P. Clinical and epidemiological profiles of severe malaria in children from Delhi, India. J Health Popul Nutr. 2012;30(1):113-116.

Lambros C, Vanderberg J. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65(3):418-420.

Lapouble OMM, Santelli ACFS, Muniz-Junqueira MI. Situação epidemiológica da malária na região amazônica brasileira, 2003 a 2012. Rev Panam Salud Publica. 2015;38(4):300-306.

Liu M, Wilairat P, Go ML. Antimalarial alkoxylated and hydroxylated chalcones: structure-activity relationship analysis. J Med Chem. 2001;44(25):4443-4452.

Mackintosh CL, Beeson JG, Marsh K. Clinical features and pathogenesis of severe malaria. Trends Parasitol. 2004;20(12):597-603.

Marfurt J, Chalfein F, Prayoga P, Wabiser F, Kenangalem E, Piera KA, et al. Ex vivo drug susceptibility of ferroquine against chloroquine-resistant isolates of Plasmodium falciparum and P. vivax. Antimicrob Agents Chemother . 2011;55(9):4461-4464.

Miotto O, Almagro-Garcia J, Manske M, Macinnis B, Campino S, Rockett KA, et al. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat Genet. 2013;45(6):648-655.

Moody A. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev. 2002;15(1):66-78.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63.

Nava-Zuazo C, Estrada-Soto S, Guerrero-Alvarez J, León-Rivera I, Molina-Salinas GM, Said-Fernández S, et al. Design, synthesis, and in vitro antiprotozoal, antimycobacterial activities of N-{2-[(7-chloroquinolin-4-yl) amino] ethyl} ureas. Bioorg Med Chem. 2010;18(17):6398-6403.

Oduola AMJ, Sowunmi A, Milhous WK, Brewer TG, Kyle DE, Gerena L, et al. In vitro and in vivo reversal of chloroquine resistance in Plasmodium falciparum with promethazine. Am J Trop Med Hyg. 1998;58(5):625-629.

Oliveira FAZ, Passarini GM, Medeiros DSS, Santos APA, Fialho SN, Gouveia AJ, et al. Antiplasmodial and antileishmanial activities of compounds from Piper tuberculatum Jacq fruits. Rev Soc Bras Med Trop. 2018;51(3):382-386.

Palaniswamy M, Pradeep BV, Sathya R, Angayarkanni J. In vitro anti-plasmodial activity of Trigonella foenum-graecum L. Evid Based Complement Altern Med. 2010;7(4):441-445.

Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012;379(9830):1960-1966.

Pontiki E, Hadjipavlou-Litina D, Litinas K, Geromichalos G. Novel cinnamic acid derivatives as antioxidant and anticancer agents: design, synthesis and modeling studies. Molecules . 2014;19(7):9655-9674

Rangel GW, Clark MA, Kanjee U, Lim C, Shaw-Saliba K, Menezes MJ, et al. Enhanced ex vivo Plasmodium vivax intraerythrocytic enrichment and maturation for rapid and sensitive parasite growth assays. Antimicrob Agents Chemother . 2018;62(4):e02519-17.

Regasini LO, Cotinguiba F, Passerini GD, Bolzani VS, Cicarelli RMB, Kato MJ, et al. Trypanocidal activity of Piper arboreum and Piper tuberculatum (Piperaceae). Rev Bras Farmacogn . 2009;19(1b):199-203.

Santos APA, Fialho SN, Medeiros DSS, Garay AFG, Diaz JAR, Gómez MCV, et al. Antiprotozoal action of synthetic cinnamic acid analogs. Rev Soc Bras Med Trop . 2018;51(6):849-853.

Sharma A, Sharma N, Shard A, Kumar R, Mohanakrishnan D, Saima, et al. Tandem allylic oxidation-condensation/ esterification catalyzed by silica gel: an expeditious approach towards antimalarial diaryldienones and enones from natural methoxylated phenylpropenes. Org Biomol Chem. 2011;9(14):5211-5219.

Singh R, Kumar S, Rana SK, Thakur B, Singh SP. A comparative study of clinical profiles of vivax and falciparum malaria in children at a tertiary care centre in Uttarakhand. J Clin Diagn Res. 2013;7(10):2234-2237.

Sistema De Informação De Agravos De Notificação - SINAN. Malária-Notificações Registradas: banco de dados. Disponível em: Disponível em: http://www.portalsinan.saude.gov.br/dados-epidemiologicos-sinan Acesso em: 08 setembro de 2019.

» http://www.portalsinan.saude.gov.br/dados-epidemiologicos-sinan

Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M. Simple and inexpensive fluorescence-based technique for high throughput antimalarial drug screening. Antimicrob Agents Chemother . 2004;48(5):1803-1806.

Sova M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev Med Chem. 2012;12(8):749-767.

Suwanarusk R, Russell B, Chavchich M, Chalfein F, Kenangalem E, Kosaisavee V, et al. Chloroquine resistant Plasmodium vivax: in vitro characterisation and association with molecular polymorphisms. PloS One. 2007;2(10):e1089.

Tawata S, Taira S, Kobamoto N, Zhu J, Ishihara M, Toyama S. Synthesis and antifungal activity of cinnamic acid esters. Biosci Biotechnol Biochem. 1996;60(5):909-910.

Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193(4254):673-675.

Wang C, Qin X, Huang B, He F, Zeng C. Hemolysis of human erythrocytes induced by melamine-cyanurate complex. Biochem Biophys Res Commun. 2010;402(4):773-777.

World Health Organization - WHO. World malaria report. Disponível em Disponível em https://www.who.int/malaria/media/world-malaria-report-2019/en Acesso em: 08 de fevereiro de 2020.

» https://www.who.int/malaria/media/world-malaria-report-2019/en

Yadav N, Dixit SK, Bhattacharya A, Mishra LC, Sharma M, Awasthi SK, et al. Antimalarial activity of newly synthesized chalcone derivatives in vitro. Chem Biol Drug Des. 2012;80(2):340-347.

Downloads

Published

2023-02-08

Issue

Section

Original Article

How to Cite

In vitro and ex vivo antiplasmodial activity of 1-(3-benzyloxy-4-methoxy-phenyl)-3-(3,4,5-trimethoxy-phenyl)-propan-1-one) against circulating strains of Plasmodium spp. in the state of Rondônia, Brazil. (2023). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e20453