Comparative study of cold hyperalgesia and mechanical allodynia in two animal models of neuropathic pain

different etiologies and distinct pathophysiological mechanisms.

Authors

  • Carlos Henrique Alves Jesus Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil https://orcid.org/0000-0002-3308-0022
  • Franciele Franco Scarante Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil
  • Anne Karoline Schreiber Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil
  • Aléxia Thamara Gasparin Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil
  • Daiany Darlly Bello Redivo Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil
  • Evelize Stacoviaki Rosa Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil
  • Joice Maria da Cunha Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil

DOI:

https://doi.org/10.1590/s2175-97902022e20637

Keywords:

Cold hyperalgesia, Mechanical Allodynia, Diabetes, Chronic constriction injury of the sciatic nerve, Transient receptor potential channels

Abstract

Neuropathic pain (NP) affects more than 8% of the global population. The proposed action of the transient receptor potential ankyrin 1 (TRPA1) as a mechanosensor and the characterization of the transient receptor potential melastatin 8 (TRPM8) as a cold thermosensor raises the question of whether these receptors are implicated in NP. Our study aimed to evaluate the involvement of TRPA1 and TRPM8 in cold and mechanical signal transduction to obtain a comparative view in rat models of streptozotocin-induced diabetes (STZ) and chronic constriction injury of the sciatic nerve (CCI). The electronic von Frey test showed that STZ rats presented mechanical allodynia that was first evidenced on the 14th day after diabetes confirmation, and four days after CCI. This phenomenon was reduced by the intraplantar (ipl) administration of a TRPA1 receptor antagonist (HC-030031; 40 μL/300 μg/paw) in both NP models. Only CCI rats displayed cold hyperalgesia based on the cold plate test. The pharmacological blocking of TRPA1 through the injection of the antagonist attenuated cold hyperalgesia in this NP model. STZ animals showed a reduction in the number of flinches induced by the intraplantar injection of mustard oil (MO; TRPA1 agonist; 0.1%/50 μL/paw), or intraplantar injection of menthol (MT; TRPM8 agonist; 0.5% and 1%/50 μL/paw). The response induced by the ipl administration of MT (1%/50 µL/paw) was significantly different between the CCI and SHAM groups. Together, these data suggest a different pattern in nociceptive behavior associated with different models of NP, suggesting a variant involvement of TRPA1 and TRPM8 in both conditions.

Downloads

Download data is not yet available.

References

Aghanoori MR, Smith DR, Shariati-Ievari S, Ajisebutu A, Nguyen A, Desmond F, et al. Insulin-like growth factor-1 activates AMPK to augment mitochondrial function and correct neuronal metabolism in sensory neurons in type 1 diabetes. Mol Metab. 2019;20:149-165. http://doi.org/10.1016/j.molmet.2018.11.008.

» https://doi.org/http://doi.org/10.1016/j.molmet.2018.11.008

Barrire DA, Rieusset J, Chanteranne D, Busserolles J, Chauvin MA, Chapuis L, et al. Paclitaxel therapy potentiates cold hyperalgesia in streptozotocin-induced diabetic rats through enhanced mitochondrial reactive oxygen species production and TRPA1 sensitization. Pain. 2012;153(3):553-561. https://doi.org/10.1016/j.pain.2011.11.019.

» https://doi.org/https://doi.org/10.1016/j.pain.2011.11.019

Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and Molecular Mechanisms of Pain. Cell. 2009;139(2):267-84. https://doi.org/10.1016/j.cell.2009.09.028.

» https://doi.org/https://doi.org/10.1016/j.cell.2009.09.028

Beiswenger KK, Calcutt NA, Mizisin AP. Dissociation of thermal hypoalgesia and epidermal denervation in streptozotocin-diabetic mice. Neurosci Lett. 2008;442 (3):267-272.https://doi.org/10.1016/j.neulet.2008.06.079.

» https://doi.org/https://doi.org/10.1016/j.neulet.2008.06.079

Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33(1):87-107. https://doi.org/10.1016/0304-3959(88)90209-6.

» https://doi.org/https://doi.org/10.1016/0304-3959(88)90209-6

Bouhassira D. Neuropathic pain: Definition, assessment and epidemiology. Rev Neurol (Paris). 2019;175(1-2):16-25. https://doi.org/10.1016/j.neurol.2018.09.016.

» https://doi.org/https://doi.org/10.1016/j.neurol.2018.09.016

Burgos-Vega CC, Ahn DDU, Bischoff C, Wang W, Horne D, Wang J, et al. Meningeal transient receptor potential channel M8 activation causes cutaneous facial and hindpaw allodynia in a preclinical rodent model of headache. Cephalalgia. 2016;36(2):185-93. https://doi.org/10.1177/0333102415584313.

» https://doi.org/https://doi.org/10.1177/0333102415584313

Calcutt NA, Freshwater JD, Mizisin AP. Prevention of sensory disorders in diabetic Sprague-Dawley rats by aldose reductase inhibition or treatment with ciliary neurotrophic factor. Diabetologia. 2004;47(4):718-724. https://doi.org/10.1007/s00125-004-1354-2.

» https://doi.org/https://doi.org/10.1007/s00125-004-1354-2

del Camino D, Murphy S, Heiry M, Barrett LB, Earley TJ, Cook CA, et al. TRPA1 contributes to cold hypersensitivity. J Neurosci. 2010;30(45):15165-15174. https://doi.org/10.1523/JNEUROSCI.2580-10.2010.

» https://doi.org/https://doi.org/10.1523/JNEUROSCI.2580-10.2010

Caspani O, Zurborg S, Labuz D, Heppenstall PA. The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain. PLoS One. 2009;4(10):e7383. https://doi.org/10.1371/journal.pone.0007383.

» https://doi.org/https://doi.org/10.1371/journal.pone.0007383

Christianson JA, Ryals JM, McCarson KE, Wright DE. Beneficial Actions of Neurotrophin Treatment on Diabetes-Induced Hypoalgesia in Mice. J Pain. 2003;4(9):493-504. https://doi.org/10.1016/j.jpain.2003.07.002.

» https://doi.org/https://doi.org/10.1016/j.jpain.2003.07.002

Clauw DJ, Essex MN, Pitman V, Jones KD. Reframing chronic pain as a disease, not a symptom: rationale and implications for pain management. Postgrad Med. 2019;131(3):185-98. https://doi.org/10.1080/00325481.2019.1574403.

» https://doi.org/https://doi.org/10.1080/00325481.2019.1574403

Corey DP, Garcia-Añoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature. 2004;432(7018):723-30. https://doi.org/10.1038/nature03066.

» https://doi.org/https://doi.org/10.1038/nature03066

da Costa DSM, Meotti FC, Andrade EL, Leal PC, Motta EM, Calixto JB. The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain. 2010;148(3):431-7. https://doi.org/10.1016/j.pain.2009.12.002.

» https://doi.org/https://doi.org/10.1016/j.pain.2009.12.002

Cunha JM, Funez MI, Cunha FQ, Parada CA, Ferreira SH. Streptozotocin-induced mechanical hypernociception is not dependent on hyperglycemia. Braz J Med Biol Res. 2009;42(2):197-206. https://doi.org/10.1590/S0100-879X2009000200008.

» https://doi.org/https://doi.org/10.1590/S0100-879X2009000200008

Dai Y. TRPs and pain. Semin Immunopathol 2016;38(3):277-91. https://doi.org/10.1007/s00281-015-0526-0.

» https://doi.org/https://doi.org/10.1007/s00281-015-0526-0

Dobretsov M, Romanovsky D, Stimers JR. Early diabetic neuropathy: Triggers and mechanisms. World J Gastroenterol. 2007;13(2):175-91. https://doi.org/10.3748/wjg.v13.i2.175.

» https://doi.org/https://doi.org/10.3748/wjg.v13.i2.175

Fathollahi A, Daneshgari F, Hanna-Mitchell AT. Effect of polyuria on bladder function in diabetics versus non-diabetics: An article review. Curr Urol. 2015;8(3):119-25. https://doi.org/10.1159/000365702.

» https://doi.org/https://doi.org/10.1159/000365702

Finnerup NB, Sindrup SH, Jensen TS. The evidence for pharmacological treatment of neuropathic pain. Pain . 2010;150(3):573-81. https://doi.org/10.1016/j.pain.2010.06.019.

» https://doi.org/https://doi.org/10.1016/j.pain.2010.06.019

Fujita F, Uchida K, Takaishi M, Sokabe T, Tominaga M. Ambient temperature affects the temperature threshold for TRPM8 activation through interaction of phosphatidylinositol 4,5-bisphosphate. J Neurosci . 2013;33(14):6154-6159. https://doi.org/10.1523/JNEUROSCI.5672-12.2013.

» https://doi.org/https://doi.org/10.1523/JNEUROSCI.5672-12.2013

Gaudioso C, Hao J, Martin-Eauclaire MF, Gabriac M, Delmas P. Menthol pain relief through cumulative inactivation of voltage-gated sodium channels. Pain . 2012;153(2):473-84. https://doi.org/10.1016/j.pain.2011.11.014.

» https://doi.org/https://doi.org/10.1016/j.pain.2011.11.014

Hamity MV, White SR, Hammond DL. Effects of neurokinin-1 receptor agonism and antagonism in the rostral ventromedial medulla of rats with acute or persistent inflammatory nociception. Neuroscience. 2010;165(3):902-13. https://doi.org/10.1016/j.neuroscience.2009.10.064.

» https://doi.org/https://doi.org/10.1016/j.neuroscience.2009.10.064

Hiyama H, Yano Y, So K, Imai S, Nagayasu K, Shirakawa H, et al. TRPA1 sensitization during diabetic vascular impairment contributes to cold hypersensitivity in a mouse model of painful diabetic peripheral neuropathy. Mol Pain . 2018;14:1-13. https://doi.org/10.1177/1744806918789812.

» https://doi.org/https://doi.org/10.1177/1744806918789812

Huang K, Bian D, Jiang B, Zhai Q, Gao N, Wang R. TRPA1 contributed to the neuropathic pain induced by docetaxel treatment. Cell Biochem Funct. 2017;35(3):141-3. https://doi.org/10.1002/cbf.3258.

» https://doi.org/https://doi.org/10.1002/cbf.3258

Jardín I, López JJ, Diez R, Sánchez-Collado J, Cantonero C, Albarrán L, et al. TRPs in pain sensation. Front Physiol. 2017;8:392. https://doi.org/10.3389/fphys.2017.00392.

» https://doi.org/https://doi.org/10.3389/fphys.2017.00392

Jolivalt CG, Frizzi KE, Guernsey L, Marquez A, Ochoa J, Rodriguez M, et al. Peripheral Neuropathy in Mouse Models of Diabetes. Curr Protoc Mouse Biol. 2016;6(3):223-255. http://doi.org/10.1002/cpmo.11.

» https://doi.org/http://doi.org/10.1002/cpmo.11.

Kamada T, McMillan DE, Otsuji S. Changes in polyphosphoinositides and phosphatidic acid of erythrocyte membranes in diabetes. Diabetes Res Clin Pract. 1992;16(2):85-90. https://doi.org/10.1016/0168-8227(92)90077-5.

» https://doi.org/https://doi.org/10.1016/0168-8227(92)90077-5

Katsura H, Obata K, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, et al. Antisense knock down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp Neurol. 2006;200(1):112-23. https://doi.org/10.1016/j.expneurol.2006.01.031.

» https://doi.org/https://doi.org/10.1016/j.expneurol.2006.01.031

Kim SO, Kim HJ. Berberine ameliorates cold and mechanical allodynia in a rat model of diabetic neuropathy. J Med Food. 2013;16(6):511-7. https://doi.org/10.1089/jmf.2012.2648.

» https://doi.org/https://doi.org/10.1089/jmf.2012.2648

Koivisto A, Hukkanen M, Saarnilehto M, Chapman H, Kuokkanen K, Wei H, et al. Inhibiting TRPA1 ion channel reduces loss of cutaneous nerve fiber function in diabetic animals: Sustained activation of the TRPA1 channel contributes to the pathogenesis of peripheral diabetic neuropathy. Pharmacol Res. 2012;65(1):149-58. https://doi.org/10.1016/j.phrs.2011.10.006.

» https://doi.org/https://doi.org/10.1016/j.phrs.2011.10.006

Kostich W, Hamman BD, Li YW, Naidu S, Dandapani K, Feng J, et al. Inhibition of AAK1 kinase as a novel therapeutic approach to treat neuropathic pain. J Pharmacol Exp Ther. 2016;358(3):371-86. https://doi.org/10.1124/jpet.116.235333.

» https://doi.org/https://doi.org/10.1124/jpet.116.235333

Kusuda R, Ravanelli MI, Cadetti F, Franciosi A, Previdelli K, Zanon S, et al. Long-term antidepressant treatment inhibits neuropathic pain-induced CREB and PLCγ-1 phosphorylation in the mouse spinal cord dorsal horn.J Pain . 2013;14(10):1162-72. https://doi.org/10.1016/j.jpain.2013.04.015.

» https://doi.org/https://doi.org/10.1016/j.jpain.2013.04.015

Kwan KY, Glazer JM, Corey DP, Rice FL, Stucky CL. TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci . 2009;29(15):4808-19. https://doi.org/10.1523/JNEUROSCI.5380-08.2009.

» https://doi.org/https://doi.org/10.1523/JNEUROSCI.5380-08.2009

Liu B, Fan L, Balakrishna S, Sui A, Morris JB, Jordt SE. TRPM8 is theprincipalmediator ofmenthol-inducedanalgesia of acute and inflammatory pain. Pain. 2013;154(10):2169-77. https://doi.org/10.1016/j.pain.2013.06.043.

» https://doi.org/https://doi.org/10.1016/j.pain.2013.06.043

Liu D, Sun M, Xu D, Ma X, Gao D, Yu H. Inhibition of TRPA1 and IL-6 signal alleviates neuropathic pain following chemotherapeutic Bortezomib. Physiol Res. 2019;68(5):845-55. https://doi.org/10.33549/physiolres.934015.

» https://doi.org/https://doi.org/10.33549/physiolres.934015

Maser RE, Nielsen VK, Bass EB, Manjoo Q, Dorman JS, Kelsey SF, et al. Measuring diabetic neuropathy. Assessment and comparison of clinical examination and quantitative sensory testing. Diabetes Care. 1989;12(4):270-275. https://doi.org/10.2337/diacare.12.4.270.

» https://doi.org/https://doi.org/10.2337/diacare.12.4.270

McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 2002;416(6876):52-8. https://doi. org/10.1038/nature719.

» https://doi.org/https://doi. org/10.1038/nature719

Moore C, Gupta R, Jordt SE, Chen Y, Liedtke WB. Regulation of Pain and Itch by TRP Channels. Neurosci Bull. 2018;34(1):120-42. https://doi.org/10.1007/s12264-017-0200-8.

» https://doi.org/https://doi.org/10.1007/s12264-017-0200-8

Nam JS, Cheong YS, Karm MH, Ahn HS, Sim JH, Kim JS, et al. Effects of nefopam on streptozotocin-induced diabetic neuropathic pain in rats. Korean J Pain. 2014;27(4):326-33. https://doi.org/10.3344/kjp.2014.27.4.326.

» https://doi.org/https://doi.org/10.3344/kjp.2014.27.4.326

Pinheiro FDV, Villarinho JG, Silva CR, Oliveira SM, Pinheiro KDV, Petri D, et al. The involvement of the TRPA1 receptor in a mouse model of sympathetically maintained neuropathic pain. Eur J Pharmacol. 2015;747:105-13. https://doi.org/10.1016/j.ejphar.2014.11.039.

» https://doi.org/https://doi.org/10.1016/j.ejphar.2014.11.039

Sałat K, Filipek B. Antinociceptive activity of transient receptor potential channel TRPV1, TRPA1, and TRPM8 antagonists in neurogenic and neuropathic pain models in mice. J Zhejiang Univ Sci B. 2015;16(3):167-78. https://doi.org/10.1631/jzus.B1400189.

» https://doi.org/https://doi.org/10.1631/jzus.B1400189

Sewell RDE. Neuropathic pain models and outcome measures: a dual translational challenge. Ann Transl Med. 2018;6(Suppl 1):S42. https://doi.org/10.21037/atm.2018.09.58.

» https://doi.org/https://doi.org/10.21037/atm.2018.09.58

Su L, Wang C, Yu YH, Ren YY, Xie KL, Wang GL. Role of TRPM8 in dorsal root ganglion in nerve injury-induced chronic pain. BMC Neurosci. 2011;12:120. https://doi.org/10.1186/1471-2202-12-120.

» https://doi.org/https://doi.org/10.1186/1471-2202-12-120

Wasner G, Naleschinski D, Binder A, Schattschneider J, Mclachlan EM, Baron R. The effect of menthol on cold allodynia in patients with neuropathic pain. Pain Med. 2008;9(3):354-8. https://doi.org/10.1111/j.1526-4637.2007.00290.x.

» https://doi.org/https://doi.org/10.1111/j.1526-4637.2007.00290.x.

Werner MFP, Kassuya CAL, Ferreira J, Zampronio AR, Calixto JB, Rae GA. Peripheral kinin B1 and B2 receptor-operated mechanisms are implicated in neuropathic nociception induced by spinal nerve ligation in rats. Neuropharmacology. 2007;53(1):48-57. https://doi.org/10.1016/j.neuropharm.2007.04.013.

» https://doi.org/https://doi.org/10.1016/j.neuropharm.2007.04.013

Yamamoto H, Shimoshige Y, Yamaji T, Murai N, Aoki T, Matsuoka N. Pharmacological characterization of standard analgesics on mechanical allodynia in streptozotocin-induced diabetic rats. Neuropharmacology . 2009;57(4):403-8. https://doi.org/10.1016/j.neuropharm.2009.06.037.

» https://doi.org/https://doi.org/10.1016/j.neuropharm.2009.06.037

Yarmolinsky DA, Peng Y, Pogorzala LA, Rutlin M, Hoon MA, Zuker CS. Coding and Plasticity in the Mammalian Thermosensory System. Neuron. 2016;92(5):1079-92. https://doi.org/10.1016/j.neuron.2016.10.021.

» https://doi.org/https://doi.org/10.1016/j.neuron.2016.10.021

Young RJ, Zhou YQ, Rodriguez E, Prescott RJ, Ewing DJ, Clarke BF. Variable relationship between peripheral somatic and autonomic neuropathy in patients with different syndromes of diabetic polyneuropathy. Diabetes. 1986;35(2):192-197. https://doi.org/10.2337/diab.35.2.192.

» https://doi.org/https://doi.org/10.2337/diab.35.2.192

Yudin Y, Rohacs T. Regulation of TRPM8 channel activity. Mol Cell Endocrinol. 2012;353(1-2):68-74. https://doi.org/10.1016/j.mce.2011.10.023.

» https://doi.org/https://doi.org/10.1016/j.mce.2011.10.023

Zhang XB, Jiang P, Gong N, Hu XL, Fei D, Xiong ZQ, et al. A-type GABA receptor as a central target of TRPM8 agonist menthol. PLoS One . 2008;3(10):e3386. https://doi.org/10.1371/journal.pone.0003386.

» https://doi.org/https://doi.org/10.1371/journal.pone.0003386

Downloads

Published

2023-02-10

Issue

Section

Original Article

How to Cite

Comparative study of cold hyperalgesia and mechanical allodynia in two animal models of neuropathic pain: different etiologies and distinct pathophysiological mechanisms. (2023). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e20637