Development and characterization of PLGA-Bupivacaine and PLGA-S75

R25 Bupivacaine (Novabupi®) biodegradable implants for postoperative pain

Autores

  • Matheus Augusto de Castro Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil https://orcid.org/0000-0002-0967-1834
  • Gabriella Maria Fernandes Cunha Department of Ophthalmology, School of Medicine, Stanford University, Stanford, California, U.S.A.
  • Gracielle Ferreira Andrade Departament of Health Sciences, Pharmaceutical Sciences Faculty, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
  • Maria Irene Yoshida Departament of Chemistry, Exact Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
  • Ana Luiza de Faria School of Chemistry, National University of Ireland Galway, Galway, Ireland
  • Armando da Silva Cunha Junior Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

DOI:

https://doi.org/10.1590/s2175-97902022e21310

Palavras-chave:

Postoperative Pain, Bupivacaine, Novabupi®, Biodegradable Implants, PLGA

Resumo

In the hospital environment, postoperative pain is a common occurrence that impairs patient recovery and rehabilitation and lengthens hospitalization time. Racemic bupivacaine hydrochloride (CBV) and Novabupi® (NBV) (S (-) 75% R (+) 25% bupivacaine hydrochloride) are two examples of local anesthetics used in pain management, the latter being an alternative with less deleterious effects. In the present study, biodegradable implants were developed using Poly(L-lactide-co-glycolide) through a hot molding technique, evaluating their physicochemical properties and their in vitro drug release. Different proportions of drugs and polymer were tested, and the proportion of 25%:75% was the most stable for molding the implants. Thermal and spectrometric analyses were performed, and they revealed no unwanted chemical interactions between drugs and polymer. They also confirmed that heating and freeze-drying used for manufacturing did not interfere with stability. The in vitro release results revealed drugs sustained release, reaching 64% for NBV-PLGA and 52% for CBV-PLGA up to 30 days. The drug release mechanism was confirmed by microscopy, which involved pores formation and polymeric erosion, visualized in the first 72 h of the in vitro release test. These findings suggest that the developed implants are interesting alternatives to control postoperative pain efficiently.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Alijanipour P, Tan TL, Matthews CN, Viola JR, Purtill JJ, Rothman RH, et al. Periarticular injection of liposomal bupivacaine offers no benefit over standard bupivacaine in total knee arthroplasty: A prospective, randomized, controlled trial. J Arthroplasty. 2017;32(2):628-34. https://doi.org/10.1016/j.arth.2016.07.023.

» https://doi.org/https://doi.org/10.1016/j.arth.2016.07.023

Anwer MK, Al-Mansoor MA, Jamil S, Al-Shdefat R, Ansari MN, Shakeel F. Development and evaluation of PLGA polymer based nanoparticles of quercetin. Int J Biol Macromol. 2016;92:213-9. https://doi.org/10.1016/j.ijbiomac.2016.07.002.

» https://doi.org/https://doi.org/10.1016/j.ijbiomac.2016.07.002

Couceiro TC de M, Valença MM, Lima LC, de Menezes TC, Raposo MCF. Prevalence and influence of gender, age, and type of surgery on postoperative pain. Braz J Anesthesiol. 2009;59(3):314-20. https://doi.org/10.1590/s0034-70942009000300006.

» https://doi.org/https://doi.org/10.1590/s0034-70942009000300006

Cox CR, Checketts MR, Mackenzie N, Scott NB, Bannister J. Comparison of S(-)-bupivacaine with racemic (RS)-bupivacaine in supraclavicular brachial plexus block. Br J Anaesth. 1998;80(5):594-8. https://doi.org/10.1093/bja/80.5.594.

» https://doi.org/https://doi.org/10.1093/bja/80.5.594

Elmallah RK, Chughtai M, Khlopas A, Newman JM, Stearns KL, Roche M, et al. Pain Control in Total Knee Arthroplasty. J Knee Surg. 2018;31(6):504-13. https://doi.org/10.1055/s-0037-1604152.

» https://doi.org/https://doi.org/10.1055/s-0037-1604152

Francisco L, Bastos S, Vago JP, Caux TR, Costa BL, Godin AM, et al. Delay of neuropathic pain sensitization after application of dexamethasone-loaded implant in sciatic nerve-injured rats. Braz J Pharm Sci. 2019;55:e18112.

Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems - A review. Int J Pharm. 2011;415(1-2):34-52. https://doi.org/10.1016/j.ijpharm.2011.05.049.

» https://doi.org/https://doi.org/10.1016/j.ijpharm.2011.05.049

Grillo R, de Melo N, de Araújo D, de Paula E, Rosa A, Fraceto L. Polymeric alginate nanoparticles containing the local anesthetic bupivacaine. J. Drug Target. 2010;18(9):688-699.

Hamaji A, de Rezende MR, Mattar R, Vieira JE, Auler JOC. Estudo comparativo entre bupivacaína (S75-R25) e ropivacaína para avaliar a segurança cardiovascular em loqueio do plexo braquial. Rev Bras Anestesiol. 2013;63(4):322-6. https://doi.org/10.1016/j.bjan.2012.06.001.

» https://doi.org/https://doi.org/10.1016/j.bjan.2012.06.001

Hussain N, Brull R, Sheehy B, Essandoh MK, Stahl DL, Weaver TE, et al. Perineural liposomal bupivacaine is not superior to nonliposomal bupivacaine for peripheral nerve block analgesia. Anesthesiology.2021;134(2):147-64. https://doi.org/10.1097/aln.0000000000003651.

» https://doi.org/https://doi.org/10.1097/aln.0000000000003651

Jahangiri A, Davaran S, Fayyazi B, Tanhaei A, Payab S, Adibkia K. Application of electrospraying as a one-step method for the fabrication of triamcinolone acetonide-PLGA nanofibers and nanobeads. Colloids Surf, B. 2014;123:219-24. https://doi.org/10.1016/j.colsurfb.2014.09.019.

» https://doi.org/https://doi.org/10.1016/j.colsurfb.2014.09.019

Kim S, Hyeon B, Koo H, Bin Y. Poly (lactic-co-glycolic acid) microparticles in fibrin glue for local, sustained delivery of bupivacaine. J Ind Eng Chem. 2019;75:86-92. https://doi.org/10.1016/j.jiec.2019.02.028.

» https://doi.org/https://doi.org/10.1016/j.jiec.2019.02.028

Kranz H, Yilmaz E, Brazeau GA, Bodmeier R. In Vitro and In Vivo Drug Release from a Novel In Situ Forming Drug Delivery System. Pharm Res. 2008;25. (6):1347-54. https://doi.org/10.1007/s11095-007-9478-y.

» https://doi.org/https://doi.org/10.1007/s11095-007-9478-y

Lamplot JD, Wagner ER, Manning DW. Multimodal pain management in total knee arthroplasty. a prospective randomized controlled trial. J Arthroplasty . 2014;29(3):329-34. https://doi.org/10.1016/j.arth.2013.06.005.

» https://doi.org/https://doi.org/10.1016/j.arth.2013.06.005

Lee SS, Hughes P, Ross AD, Robinson MR. Biodegradable implants for sustained drug release in the eye. Pharm Res . 2010;27(10):2043-53. https://doi.org/10.1007/s11095-010-0159-x.

» https://doi.org/https://doi.org/10.1007/s11095-010-0159-x

Leiman D, Niebler G, Minkowitz HS. Pharmacokinetics and Safety of INL-001 (Bupivacaine HCl) Implants Compared with Bupivacaine HCl Infiltration After Open Unilateral Inguinal Hernioplasty. Adv Ther. 2021;38(1):691-706. https://doi.org/10.1007/s12325-020-01565-x.

» https://doi.org/https://doi.org/10.1007/s12325-020-01565-x

Lopes B, Resende R De, Rodrigues M, Paiva B, Serakides R, Matos M De, et al. Sirolimus-loaded biodegradable implants induce long lasting anti- in fl ammatory and antiangiogenic effects. J Drug Delivery Sci Technol. 2018;44:373-9. https://doi.org/10.1016/j.jddst.2018.01.018.

» https://doi.org/https://doi.org/10.1016/j.jddst.2018.01.018

Lorincz A, Mihály J, Németh C, Wacha A, Bóta A. Effects of ursolic acid on the structural and morphological behaviours of dipalmitoyl lecithin vesicles. Biochim Biophys Acta, Biomembranes. 2015;1848(5):1092-8. https://doi.org/10.1016/j.bbamem.2015.01.010.

» https://doi.org/https://doi.org/10.1016/j.bbamem.2015.01.010

Martins ML, Eckert J, Jacobsen H, dos Santos EC, Ignazzi R, de Araujo DR, et al. Raman and Infrared spectroscopies and X-ray diffraction data on bupivacaine and ropivacaine complexed with 2-hydroxypropyl−β−cyclodextrin. Data Brief. 2017;15:25-9. https://doi.org/10.1016/j.dib.2017.08.053.

» https://doi.org/https://doi.org/10.1016/j.dib.2017.08.053

Mir M, Ahmed N, Rehman A ur. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf , B. 2017;159:217-31. https://doi.org/10.1016/j. colsurfb.2017.07.038.

» https://doi.org/https://doi.org/10.1016/j. colsurfb.2017.07.038

Nelson M, Reens A, Reda L, Lee D. Profound Prolonged Bradycardia and Hypotension after Interscalene Brachial Plexus Block with Bupivacaine. J Emerg Med 2018;54(3):e41-43. https://doi.org/10.1016/j.jemermed.2017.12.004.

» https://doi.org/https://doi.org/10.1016/j.jemermed.2017.12.004

Pereira RJ, Munechika M, Sakata RK. Pain management after outpatient surgical procedure. Rev Dor. 2013;14(1):61-7.

Sadeghi-avalshahr A, Nokhasteh S, Molavi AM. Synthesis and characterization of collagen/PLGA biodegradable skin scaffold fibers. Regen Biomater. 2017;4(5):309-14. https://doi.org/10.1093/rb/rbx026.

» https://doi.org/https://doi.org/10.1093/rb/rbx026

Sendil D, Bonney IM, Carr DB, Lipkowski AW, Wise DL, Hasirci V. Antinociceptive effects of hydromorphone, bupivacaine and biphalin released from PLGA polymer after intrathecal implantation in rats. Biomaterials. 2003;24(11):1969-76. https://doi.org/10.1016/S0142-9612(02)00567-7.

» https://doi.org/https://doi.org/10.1016/S0142-9612(02)00567-7

Soares DCF, de Paula Oliveira DC, Barcelos LS, Barbosa AS, Vieira LC, Townsend DM, et al. Antiangiogenic activity of PLGA-Lupeol implants for potential intravitreal applications. Biomed Pharmacother. 2017;92:394-402. https://doi.org/10.1016/j.biopha.2017.05.093.

» https://doi.org/https://doi.org/10.1016/j.biopha.2017.05.093

Sykuła-Zając A, Łodyga-Chruścińska E, Pałecz B, Dinnebier RE, Griesser UJ, Niederwanger V. Thermal and X-ray analysis of racemic bupivacaine hydrochloride. J Therm Anal Calorim. 2011;105:1031-6. https://doi.org/10.1007/s10973-011-1425-9.

» https://doi.org/https://doi.org/10.1007/s10973-011-1425-9

Taraballi F, Minardi S, Corradetti B, Yazdi I, Balliano M, Van Eps J, et al. Potential avoidance of adverse analgesic effects using a biologically “smart” hydrogel capable of controlled bupivacaine release. J Pharm Sci. 2014;103(11):3724-3723. https://doi.org/10.1002/jps.24190

» https://doi.org/https://doi.org/10.1002/jps.24190

Velanovich V, Rider P, Deck K, Minkowitz HS, Leiman D, Jones N, et al. Safety and Efficacy of Bupivacaine HCl Collagen-Matrix Implant (INL-001) in Open Inguinal Hernia Repair: Results from Two Randomized Controlled Trials. Adv Ther . 2019;36(1):200-16. https://doi.org/10.1007/s12325-018-0836-4.

» https://doi.org/https://doi.org/10.1007/s12325-018-0836-4

Wang B, Wang S, Zhang Q, Deng Y, Li X, Peng L, et al. Recent advances in polymer-based drug delivery systems for local anesthetics. Acta Biomater. 2019;96:55-67. https://doi.org/10.1016/j.actbio.2019.05.044.

» https://doi.org/https://doi.org/10.1016/j.actbio.2019.05.044

Weinberg GL. Treatment of local anesthetic systemic toxicity (LAST). Reg Anesth Pain Med. 2010;35(2):188-93. https://doi.org/10.1097/AAP.0b013e3181d246c3.

» https://doi.org/https://doi.org/10.1097/AAP.0b013e3181d246c3

Wu CL, Raja SN. Treatment of acute postoperative pain. Lancet. 2011;377(9784):2215-25. https://doi.org/10.1016/S0140-6736(11)60245-6.

» https://doi.org/https://doi.org/10.1016/S0140-6736(11)60245-6

Zhang H, Lu Y, Zhang G, Gao S, Sun D, Zhong Y. Bupivacaine-loaded biodegradable poly(lactic-co-glycolic) acid microspheres. Optimization of the drug incorporation into the polymer matrix and modelling of drug release. Int J Pharm . 2008;351(1-2):244-249.

Zhang J, Shi K, Jia H. Ketamine and bupivacaine attenuate post-operative pain following total knee arthroplasty: A randomized clinical trial. Exp Ther Med. 2018;15(6):5537-43. https://doi.org/10.3892/etm.2018.6104.

» https://doi.org/https://doi.org/10.3892/etm.2018.6104

Downloads

Publicado

2023-02-10

Edição

Seção

Original Article

Como Citar

Development and characterization of PLGA-Bupivacaine and PLGA-S75: R25 Bupivacaine (Novabupi®) biodegradable implants for postoperative pain. (2023). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e21310