Influence of the ionic strength on the physicochemical properties of methotrexate-loaded chitosan polyelectrolyte complexes

Authors

  • Sandra Barbosa Neder Agostini School of Pharmacy, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil https://orcid.org/0000-0003-0483-3678
  • Victor Lima de Sousa Machado School of Pharmacy, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
  • Luciano Sindra Virtuoso Institute of Chemistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
  • Denismar Alves Nogueira Institute of Exact Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
  • Gislaine Ribeiro Pereira School of Pharmacy, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
  • Flavia Chiva Carvalho School of Pharmacy, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil

DOI:

https://doi.org/10.1590/s2175-97902022e20621

Keywords:

Polyelectrolyte complex, Chitosan, Ionic strength, Polydispersity, Nanoparticles

Abstract

Polyelectrolyte complexes (PECs) as drug delivery systems are widely explored since they are easily obtained by coacervation and biopolymers can be associated. However, particle distribution is a challenging critical parameter that has been infrequently focused. This work evaluated the effect of NaCl concentration on the physicochemical properties of PECs based on chitosan and hypromellose loaded with methotrexate. The particle size, zeta potential and polydispersity index (PdI) were determined by DLS, besides of drug entrapment efficiency (EE) and in vitro drug release profile determination. Particle size decreased while NaCl concentration rised, achieving a narrower size distribution of (345±79 nm) and PdI (0.285±0.067) with 200 mmol/L NaCl. The higher the NaCl concentration, the lower the zeta potential at acid pH. The EE was kept similar ((28.2±4.5) %) from 0 to 300 mmol/L NaCl, while 400 mmol/L NaCl impaired the drug entrapment. The addition of (200 and 300) mmol/L NaCl did not affect the drug release profile, but it was faster with (100 or 400) mmol/L. In conclusion, the addition of 200 mmol/L NaCl reduced particle size and PdI with no changes in the EE and drug release. Therefore, the ionic strength plays an important role on PECs development.

Downloads

Download data is not yet available.

References

Akilo OD, Kumar P, Choonara YE, Du Toit LC, Pradeep P, Modi G, et al. In situ thermo-co-electroresponsive mucogel for controlled release of bioactive agent. Int J Pharm. 2019;559:255-70. https://doi.org/10.1016/j.ijpharm.2019.01.044

» https://doi.org/10.1016/j.ijpharm.2019.01.044

Ambhore NP, Dandagi PM, Gadad AP. Formulation and comparative evaluation of HPMC and water soluble chitosan-based sparfloxacin nanosuspension for ophthalmic delivery. Drug Deliv Transl Res. 2016;6(1):48-56. https://doi.org/10.1007/s13346-015-0262-y

» https://doi.org/10.1007/s13346-015-0262-y

Antoniou J, Liu F, Majeed H, Qi J, Yokoyama W, Zhong F. Physicochemical and morphological properties of size-controlled chitosan-tripolyphosphate nanoparticles. Colloids Surf A. 2015;465:137-46. https://doi.org/10.1016/j.colsurfa.2014.10.040

» https://doi.org/10.1016/j.colsurfa.2014.10.040

Arthanari S, Mani G, Peng MM, Jang HT. Chitosan ‒ HPMC-blended microspheres as a vaccine carrier for the delivery of tetanus toxoid. Artif Cells Nanomed Biotechnol. 2014;44(2):517-23. https://doi.org/10.3109/21691401.2014.966193

» https://doi.org/10.3109/21691401.2014.966193

Barbi S, Carvalho FC, Kiill CP, Barud S. Preparation and Characterization of Chitosan Nanoparticles for Zidovudine Nasal Delivery. J Nanosci Nanotechnol. 2015;15(1):865-74. https://doi.org/10.1166/jnn.2015.9180

» https://doi.org/10.1166/jnn.2015.9180

Boni FI, Almeida A, Lechanteur A, Sarmento B, Cury BSF, Gremião MPD. Mucoadhesive nanostructured polyelectrolytes complexes modulate the intestinal permeability of methotrexate. Eur J Pharm Sci. 2018;111:73-82. https://doi.org/10.1016/j.ejps.2017.09.042

» https://doi.org/10.1016/j.ejps.2017.09.042

Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci . 2001;13(2):123-133. https://doi.org/10.1016/S0928-0987(01)00095-1

» https://doi.org/10.1016/S0928-0987(01)00095-1

Ding L, Huang Y, Cai X, Wang S. Impact of pH, ionic strength and chitosan charge density on chitosan / casein complexation and phase behavior. Carbohydr Polym. 2019;208:133-41. https://doi.org/10.1016/j.carbpol.2018.12.015

» https://doi.org/10.1016/j.carbpol.2018.12.015

Fu J, Schlenoff JB. Driving forces for oppositely charged polyion association in aqueous solutions: Enthalpic, entropic, but not electrostatic. J Am Chem Soc. 2016;138(3):980-990. https://doi.org/10.1021/jacs.5b11878

» https://doi.org/10.1021/jacs.5b11878

Gatti THH, Eloy JO, Ferreira LMB, Da Silva IC, Pavan FR, Gremião MPD, et al. Insulin-loaded polymeric mucoadhesive nanoparticles: Development, characterization and cytotoxicity evaluation. Braz J Pharm Sci. 2018;54(01):1-10. https://doi.org/10.1590/s2175-97902018000117314

» https://doi.org/10.1590/s2175-97902018000117314

Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond). 2016;11:673-92. https://doi.org/10.2217/nnm.16.5

» https://doi.org/10.2217/nnm.16.5

Huang Y, Lapitsky Y. On the kinetics of chitosan/ tripolyphosphate micro- and nanogel aggregation and their effects on particle polydispersity. J Colloid Interface Sci. 2017;486:27-37. https://doi.org/10.1016/j.jcis.2016.09.050

» https://doi.org/10.1016/j.jcis.2016.09.050

Huang Y, Lapitsky Y. Monovalent salt enhances colloidal stability during the formation of chitosan/tripolyphosphate microgels. Langmuir. 2011;27(17):10392-9. https://doi.org/10.1021/la201194a

» https://doi.org/10.1021/la201194a

Jaleh V, Somayeh T, Mohsen M, Fatemeh R, Azar B. Development and in vitro/in vivo evaluation of HPMC/ chitosan gel containing sinvastatin loaded self-assembled nanomicelles as potent wound healing agent. Drug Dev Ind Pharm. 2018;44(2):276-288. https://doi.org/10.1080/03639045.2017.1391832

» https://doi.org/10.1080/03639045.2017.1391832

Jonassen H, Kjøniksen AL, Hiorth M. Effects of ionic strength on the size and compactness of chitosan nanoparticles. Colloid Polym Sci. 2012;290:919-29. https://doi.org/10.1007/s00396-012-2604-3

» https://doi.org/10.1007/s00396-012-2604-3

Khan ZA, Tripathi R, Mishra B. Methotrexate : a detailed review on drug delivery and clinical aspects. Expert Opin Drug Deliv. 2012;9(2):151-169. https://doi.org/10.1517/17425247.2012.642362

» https://doi.org/10.1517/17425247.2012.642362

Kulkarni AD, Vanjari YH, Sancheti KH, Patel HM, Belgamwar VS, Surana SJ, et al. Polyelectrolyte complexes: mechanisms, critical experimental aspects, and applications. Artif Cells Nanomed Biotechnol . 2016;44(7):1615-25. https://doi.org/10.3109/21691401.2015.1129624

» https://doi.org/10.3109/21691401.2015.1129624

Lacerda GJS, Piantino BL, Gonzaga EV, Naves V de ML, Pedreiro LN, Gremião MPD, et al. Evaluation of polyelectrolyte and emulsion covalent crosslink of chitosan for producing mesalasine loaded submicron particles. Braz J Pharm Sci . 2019;55:1-12. https://doi.org/10.1590/s2175-97902019000217847

» https://doi.org/10.1590/s2175-97902019000217847

Lapitsky Y. Ionically crosslinked polyelectrolyte nanocarriers: Recent advances and open problems. Curr Opin Colloid Interface Sci. 2014;19(2):122-130. https://doi.org/10.1016/j.cocis.2014.03.014

» https://doi.org/10.1016/j.cocis.2014.03.014

Marques MR, Loebenger R, Almukainzi M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol. 2011;18(3):15-28. https://doi.org/10.14227/DT180311P15

» https://doi.org/10.14227/DT180311P15

Mendes IT, Ruela ALM, Carvalho FC, Freitas JTJ, Bon R, Pereira GR. Development and characterization of nanostructured lipid carrier-based gels for the transdermal delivery of donepezil. Colloids Surfaces B. 2019;177:274-81. https://doi.org/10.1016/j.colsurfb.2019.02.007

» https://doi.org/10.1016/j.colsurfb.2019.02.007

De Mendiburu F. Statistical Procedures for Agricultural Research 2017.

Mioduszewska K, Dotzonek J, Wyrzykowski D, Kubik Ł, Wiczling P, Sikorska C, et al. Overview of experimental and computational methods for the determination of the pKa values of 5-fluorouracil, cyclophosphamide, ifosfamide, imatinib and methotrexate. Trends Anal Chem. 2017;97:283-96. https://doi.org/10.1016/j.trac.2017.09.009

» https://doi.org/10.1016/j.trac.2017.09.009

Mura P, Mennini N, Nativi C, Richichi B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur J Pharm Biopharm. 2018;122:54-61. https://doi.org/10.1016/j.ejpb.2017.10.008

» https://doi.org/10.1016/j.ejpb.2017.10.008

Notario-Pérez F, Cazorla-Luna R, Martín-Illana A, Ruiz-Caro R, Tamayo A, Rubio J, et al. Optimization of tenofovir release from mucoadhesive vaginal tablets by polymer combination to prevent sexual transmission of HIV. Carbohydr Polym . 2018;179:305-16. https://doi.org/10.1016/j.carbpol.2017.10.001

» https://doi.org/10.1016/j.carbpol.2017.10.001

Nunthanid J, Huanbutta K, Luangtana-anan M, Sriamornsak P, Limmatvapirat S, Puttipipatkhachorn S. Development of time-, pH-, and enzyme-controlled colonic drug delivery using spray-dried chitosan acetate and hydroxypropyl methylcellulose. Eur J Pharm Biopharm . 2008;68(2):253-9. https://doi.org/10.1016/j.ejpb.2007.05.017

» https://doi.org/10.1016/j.ejpb.2007.05.017

Pedreiro LN, Cury BSF, Gremião MPD. Mucoadhesive Nanostructured polyelectrolyte complexes as potential carrier to improve zidovudine permeability. J Nanosci Nanotechnol . 2016;16(2):1248-56. https://doi.org/10.1166/ jnn.2016.11678

» https://doi.org/10.1166/ jnn.2016.11678

Rabelo RS, Tavares GM, Prata AS, Hubinger MD. Complexation of chitosan with gum Arabic, sodium alginate and κ-carrageenan: Effects of pH, polymer ratio and salt concentration. Carbohydr Polym . 2019;223:115120. https://doi.org/10.1016/j.carbpol.2019.115120

» https://doi.org/10.1016/j.carbpol.2019.115120

Ruiz-Caro R, Gago-Guillan M, Otero-Espinar FJ, Veiga MD. Mucoadhesive tablets for controlled release of acyclovir. Chem Pharm Bull (Tokyo). 2012;60(10):1249-57. https://doi.org/10.1248/cpb.c12-00324

» https://doi.org/10.1248/cpb.c12-00324

Saha AK, Ray SD. Effect of cross-linked biodegradable polymers on sustained release of sodium diclofenac-loaded microspheres. Braz J Pharm Sci . 2013;49(4):873-88. https://doi.org/10.1590/S1984-82502013000400028

» https://doi.org/10.1590/S1984-82502013000400028

Salopek B, Krasi D, Filipovic S. Measurement and application of zeta-potential. Rud Zb. 1992;4:147-51.

Sawtarie N, Cai Y, Lapitsky Y. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity. Colloids Surf B. 2017;157:110-7. https://doi.org/10.1016/j.colsurf b.2017.05.055

» https://doi.org/10.1016/j.colsurf b.2017.05.055

Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci. 2019;263:131-94. https://doi.org/10.1016/j.cis.2018.11.008

» https://doi.org/10.1016/j.cis.2018.11.008

Shukla RK, Tiwari A. Carbohydrate polymers : applications and recent advances in delivering drugs to the colon. Carbohydr Polym . 2012;88(2):399-416. https://doi.org/10.1016/j.carbpol.2011.12.021

» https://doi.org/10.1016/j.carbpol.2011.12.021

SYSTAT SOFTWARE Inc. Sigmaplot for Windows versão 10.0 2006.

Taghe S, Mirzaeei S. Preparation and characterization of novel, mucoadhesive of ofloxacin nanoparticles for ocular drug delivery. Braz J Pharm Sci . 2019;55:1-12. https://doi.org/10.1590/s2175-97902019000117105

» https://doi.org/10.1590/s2175-97902019000117105

Team RC. R: a language and environment for statistical computing 2018.

Verma A, Dubey J, Verma N, Ak N. Chitosan-Hydroxypropyl Methylcellulose Matrices as Carriers for Hydrodynamically Balanced Capsules of Moxifloxacin HCl. Curr Drug Deliv. 2017;14(1):83-90. https://doi.org/10.2174/1567201813666160504100842

» https://doi.org/10.2174/1567201813666160504100842

Yang M, Shi J, Schlenoff JB. Control of Dynamics in Polyelectrolyte Complexes by Temperature and Salt. Macromolecules. 2019;52(5):1930-41. https://doi.org/10.1021/acs.macromol.8b02577

» https://doi.org/10.1021/acs.macromol.8b02577

Yang Y, Cheng J, Garamus VM, Li N, Zou A. Preparation of an Environmentally Friendly Formulation of the Insecticide Nicotine Hydrochloride through Encapsulation in Chitosan/Tripolyphosphate Nanoparticles. J Agric Food Chem. 2018;66(5):1067-74. https://doi.org/10.1021/acs.jafc.7b04147

» https://doi.org/10.1021/acs.jafc.7b04147

Downloads

Published

2023-02-28

Issue

Section

Original Article

How to Cite

Influence of the ionic strength on the physicochemical properties of methotrexate-loaded chitosan polyelectrolyte complexes. (2023). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e20621