Isolamento de bacteriófagos líticos de Escherichia coli de origem suína

Autores

  • André Luis Fachini de Souza Instituto Federal Catarinense, Programa de Pós-graduação em Tecnologia e Ambiente https://orcid.org/0000-0003-2966-8058
  • Lenita de Cássia Moura Stefani Universidade do Estado de Santa Catarina, Programa de Pós-graduação em Zootecnia

DOI:

https://doi.org/10.11606/issn.1678-4456.bjvras.2024.222458

Palavras-chave:

Bacteriófagos, Isolamento, Produção de suínos

Resumo

Bacteriófagos (fagos) são pequenos vírus que infectam bactérias e representam as entidades biológicas mais abundantes na natureza. Após infecção, durante o ciclo reprodutivo lítico, novos fagos são produzidos, causando ruptura da célula bacteriana e liberação de novos bacteriófagos no ambiente. Os fagos têm sido utilizados como estratégia de controle de infecções bacterianas em diversas áreas, inclusive na suinocultura, onde cepas patogênicas multi-resistentes de Escherichia coli representam um dos principais agentes associados a doenças em suínos. Nesse sentido, a fagoterapia como tratamento alternativo requer a seleção de bacteriófagos específicos para as cepas de interesse. Assim, o objetivo deste trabalho foi isolar bacteriófagos líticos de E. coli de amostras fecais de suínos, utilizando cepas padrão de E. coli como hospedeiras da infecção. Para isso, quatro bacteriófagos infectantes para E. coli ATCC 8739 e dois para cada uma das cepas de E. coli K12 MG1655 e DH5α foram isolados. As suspensões de fagos obtidas tiveram sua virulência (título) determinada. Ensaios de infecção e lise celular revelaram que foram capazes de lisar as células bacterianas quando adicionados às culturas líquidas, reduzindo o crescimento celular em aproximadamente 75% após 2 horas, evidenciando a possibilidade de serem usados como uma ferramenta alternativa aos antibióticos no tratamento de infecções bacterianas, além dos antibióticos tradicionais. Novos estudos usando modelos in vivo devem ser considerados. 

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Adams M. The stability of bacterial viruses in solutions of salts. J Gen Physiol. 1949;32(5):579-94. http://doi.org/10.1085/jgp.32.5.579. PMid:18131256.

Atterbury RJ, Dillon E, Swift C, Connerton PL, Frost JA, Dodd CER, Rees CED, Connerton IF. Correlation of Campylobacter bacteriophage with reduced presence of hosts in broiler chicken ceca. Appl Environ Microbiol. 2005;71(8):4885-7. http://doi.org/10.1128/AEM.71.8.4885-4887.2005. PMid:16085889.

Brazilian Pork. Brazilian pig farming [Internet]. São Paulo: Brazilian Pork; 2021 [cited 2023 Apr 3]. Available from: https://brazilianpork.com.br/pork-industry/brazilian-pig-farming/?lang=en#.

Costa MM, Maboni F, Weber SS, Ferronato AI, Schrank IS, Vargas APC. Patotipos de Escherichia coli na suinocultura e suas implicações ambientais e na resistência aos antimicrobianos. Arq Inst Biol. 2009;76(3):509-16. http://doi.org/10.1590/1808-1657v76p5092009.

Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417-33. http://doi.org/10.1128/MMBR.00016-10. PMid:20805405.

Fairbrother JM, Nadeau E, Gyles CL. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev. 2005;6(1):17-39. http://doi.org/10.1079/AHR2005105. PMid:16164007.

Gill JJ, Hyman P. Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol. 2010;11(1):2-14. http://doi.org/10.2174/138920110790725311. PMid:20214604.

Gunsalus IN, Hand DB. The use of bacteria in the chemical determination of total vitamin C. J Biol Chem. 1941;141(3):853-8. http://doi.org/10.1016/S0021-9258(18)72757-9.

Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983;166(4):557-80. http://doi.org/10.1016/S0022-2836(83)80284-8. PMid:6345791.

Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, Krylov VN, Balcão VM. Biotechnological applications of bacteriophages: state of the art. Microbiol Res. 2018;212-213:38-58. http://doi.org/10.1016/j.micres.2018.04.007. PMid:29853167.

Hatfull GF, Hendrix RW. Bacteriophages and their genomes. Curr Opin Virol. 2011;1(4):298-303. http://doi.org/10.1016/j.coviro.2011.06.009. PMid:22034588.

Hyman P. Phages for phage therapy: Isolation, characterization, and host range breadth. Pharmaceuticals. 2019;12(1):35. http://doi.org/10.3390/ph12010035. PMid:30862020.

Jamal M, Bukhari SMAUS, Andleeb S, Ali M, Raza S, Nawaz MA, Hussain T, Rahman SU, Shah SSA. Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields. J Basic Microbiol. 2019;59(2):123-33. http://doi.org/10.1002/jobm.201800412. PMid:30485461.

Jamalludeen N, Johnson RP, Friendship R, Kropinski AM, Lingohr EJ, Gyles CL. Isolation and characterization of nine bacteriophages that lyse O149 enterotoxigenic Escherichia coli. Vet Microbiol. 2007;124(1-2):47-57. http://doi.org/10.1016/j.vetmic.2007.03.028. PMid:17560053.

Jensen KF. The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol. 1993;175(11):3401-7. http://doi.org/10.1128/jb.175.11.3401-3407.1993. PMid:8501045.

Johnson RP, Gyles CL, Huff WE, Ojha S, Huff GR, Rath NC, Donoghue AM. Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs. Anim Health Res Rev. 2008;9(2):201-15. http://doi.org/10.1017/S1466252308001576. PMid:19102791.

Kęsik-Szeloch A, Drulis-Kawa Z, Weber-Dąbrowska B, Kassner J, Majkowska-Skrobek G, Augustyniak D, Lusiak-Szelachowska M, Zaczek M, Górski A, Kropinski AM. Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae. Virol J. 2013;10(1):100. http://doi.org/10.1186/1743-422X-10-100. PMid:23537199.

Kiani AK, Anpilogov K, Dhuli K, Paolacci S, Benedetti S, Manara E, Guerri G, Dautaj A, Beccari T, Dundar M, Bertelli M. Naturally-occurring and cultured bacteriophages in human therapy. Eur Rev Med Pharmacol Sci. 2021;25(1, Suppl.):101-7. http://doi.org/10.26355/eurrev_202112_27339. PMid:34890040.

Kortright KE, Chan BK, Koff JL, Turner PE. A renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019;25(2):219-32. http://doi.org/10.1016/j.chom.2019.01.014. PMid:30763536.

Laird TJ, Abraham S, Jordan D, Pluske JR, Hampson DJ, Trott DJ, O’Dea M. Porcine enterotoxigenic Escherichia coli: antimicrobial resistance and development of microbial-based alternative control strategies. Vet Microbiol. 2021;258:109117. http://doi.org/10.1016/j.vetmic.2021.109117. PMid:34049073.

Leiman PG, Shneider MM. Contractile tail machines of bacteriophages. Adv Exp Med Biol. 2012;726:93-114. http://doi.org/10.1007/978-1-4614-0980-9_5. PMid:22297511.

Li L, Han K, Mao X, Wang L, Cao Y, Li Z, Wu Y, Tan Y, Shi Y, Zhang L, Liu H, Li Y, Peng H, Li X, Hu C, Wang X. Oral phages prophylaxis against mixed Escherichia coli O157:H7 and Salmonella Typhimurium infections in weaned piglets. Vet Microbiol. 2024;288:109923. http://doi.org/10.1016/j.vetmic.2023.109923. PMid:38061277.

Lin Y, Zhou B, Zhu W. Pathogenic Escherichia coli-specific bacteriophages and polyvalent bacteriophages in piglet guts with increasing coliphage numbers after weaning. Appl Environ Microbiol. 2021;87(17):e0096621. http://doi.org/10.1128/AEM.00966-21. PMid:34160270.

Luong T, Salabarria A-C, Edwards RA, Roach DR. Standardized bacteriophage purification for personalized phage therapy. Nat Protoc. 2020;15(9):2867-90. http://doi.org/10.1038/s41596-020-0346-0. PMid:32709990.

Miller JH. Experiments in molecular genetics. New York: Cold Spring Harbor Laboratory; 1972. 468 p.

Pelzek AJ, Schuch R, Schmitz JE, Fischetti VA. Isolation, culture, and characterization of bacteriophages. Curr Protoc Essent Lab. 2008;7:4.4.1. http://doi.org/10.1002/9780470089941.et0404s07.

Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. New York: Cold Spring Harbor laboratory Press; 2001. 2344 p. (vol. 3).

Sriprasong P, Imklin N, Nasanit R. Selection and characterization of bacteriophages specific to Salmonella Choleraesuis in swine. Vet World. 2022;15(12):2856-69. http://doi.org/10.14202/vetworld.2022.2856-2869. PMid:36718326.

Sui B, Han L, Ren H, Liu W, Zhang C. A novel polyvalent bacteriophage vB_EcoM_swi3 infects pathogenic Escherichia coli and Salmonella enteritidis. Front Microbiol. 2021;12:649673. http://doi.org/10.3389/fmicb.2021.649673. PMid:34335489.

Vera-Mansilla J, Sánchez P, Silva-Valenzuela CA, Molina-Quiroz RC. Isolation and characterization of novel lytic phages infecting multidrug-resistant Escherichia coli. Microbiol Spectr. 2022;10(1):e0167821.; published online Feb 16, 2022. http://doi.org/10.1128/spectrum.01678-21. PMid:35171030.

World Health Organization. Antibiotic resistance [Internet]. Geneva: WHO; 2020 [cited 2023 Apr 3]. Available from: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance

Wu Y, Zhao J, Xu C, Ma N, He T, Zhao J, Ma X, Thacker PA. Progress towards pig nutrition in the last 27 years. J Sci Food Agric. 2020;100(14):5102-10. http://doi.org/10.1002/jsfa.9095. PMid:29691867.

Zhang J, Li Z, Cao Z, Wang L, Li X, Li S, Xu Y. Bacteriophages as antimicrobial agents against major pathogens in swine: a review. J Anim Sci Biotechnol. 2015;6(1):39. http://doi.org/10.1186/s40104-015-0039-7. PMid:26309734.

Zhou Y, Bao H, Zhang H, Wang R. Isolation and characterization of lytic phage vB_EcoM_JS09 against clinically isolated antibiotic-resistant avian pathogenic Escherichia coli and enterotoxigenic Escherichia coli. Intervirology. 2015;58(4):218-31. http://doi.org/10.1159/000437426. PMid:26337345.

Downloads

Publicado

2024-08-27

Edição

Seção

ARTIGO COMPLETO

Como Citar

1.
Souza ALF de, Stefani L de CM. Isolamento de bacteriófagos líticos de Escherichia coli de origem suína. Braz. J. Vet. Res. Anim. Sci. [Internet]. 27º de agosto de 2024 [citado 23º de novembro de 2024];61:e222458. Disponível em: https://periodicos.usp.br/bjvras/article/view/222458