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RESUMO 

O objetivo deste artigo e estudar as propriedades de varias series temporais monetarias brasileiras. Em particu- 

lar, sao aplicados os procedimentos de teste propostos por Beaulieu e Miron (1993) para detenninar a presenga 

de raizes unitarias na freqiiencia zero e/ou nas freqiiencias sazonais. Estes testes mostram, em todos os casos, 

a existencia de uma raiz unitaria na freqiiencia zero e indicam que nao existem raizes unitarias nas freqiiencias 

sazonais. Estos resultados implicam que a primeira diferenga da cada serie e estacionaria e pode ser modelada 

com variaveis dummy sazonais. 
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ABSTRACT 

The objective of this paper is to study the time series properties of several Brazilian monthly monetary series. 

The test procedures proposed by Beaulieu and Miron (1993) are applied to determine the presence of unit roots 

at the zero frequency as well as the seasonal frequencies. In all cases these tests point out the existence of a 

unit root at the zero frequency but do not find any at the seasonal frequencies. These findings imply that the 

first differences of the series are stationary and can be modelled with seasonal dummy variables. 
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1 Introduction 

Seasonality is an important feature of many economic time series and needs to be under- 

stood and taken into account in the modelling of time series data. It can either be filtered out of 

the data or jointly modelled with the other characteristics of the phenomenon under study The 

first approach involves using a filter to obtain seasonally adjusted data (such an approach was 

followed by Haache (1974) in studying the demand for money). The second attempts to cap- 

ture seasonality by means of seasonal dummies, which is equivalent to assuming seasonal vari- 

ations to be purely deterministic. "However, if seasonal effects change gradually over time, 

this (second) approach leads to dynamic misspecification ..." (Harvey and Scott, 1994, p. 

1324) For this reason, whenever seasonal data is used in econometrics, it seems advisable to 

test for the time series properties of the variables, rather than to assume the appropriateness of 

any model specification. 

The seasonal movement in many economic variables is the result of a complex decision- 

making process based on varying and changing exogenous causes. Hylleberg (1992, p. 4) pro- 

posed the following definition: 

Seasonality is the systematic, although not necessarily regular, intra- 

year movement caused by the changes of the weather, the calendar, and 

timing of decisions, directly or indirectly through the production and 

consumption decisions made by the agents of the economy. These deci- 

sions are influenced by endowments, the expectations and preferences 

of the agents, and the production techniques available in the economy. 

The last two decades have witnessed a renewed interest in the problem of seasonality. 

Econometricians have come to agree that seasonal variation accounts for a major part of the 

total variation in many quarterly and monthly time series. However, agreement is not so strong 

on the issue of whether the seasonal components are very regular and constant over long peri- 

ods of time, or whether they change over the years. Another controversy has concerned the 

nature of the interdependence between the seasonal components and other components of the 

time series such as the business cycle component. 

Recent empirical studies suggest that a straightforward incorporation 

of seasonal fluctuations in econometric models using simple determin- 

istic terms does not seem feasible. This conjecture is based on the fol- 

lowing two stylisedfacts (or empirical regularities). The first is that sea- 

sonal fluctuations in many quarterly and monthly observed macroeco- 

nomic time series do not appear to be constant over time. The second 
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is that for several macroeconomic series it appears that the seasonal 

fluctuations and nonseasonal fluctuations are not independent, in the 

sense that one may observe different seasonal fluctuations in business 

cycle expansion periods from those in recession periods. (Franses, 1996, 

P- 1) 

The immediate implication of the above second regularity is that the key assumption of sea- 

sonal adjustment methods - that is, that one can identify independent seasonal and nonseasonal 

components - does not hold. 

The model selection techniques popularised by Box and Jenkins (1976) recommend the use 

ofthe seasonal filters AA5 = (1-L)(1-Z/) or simply a^ = (1-Z/) to get rid of seasonal 

variations in the data.1 Such filters are appropriate only where the series dealt with is season- 

ally integrated (the former implies the existence of 13 unit roots and the latter of 12 such roots). 

However, if fewer unit roots are present, the use of these filters yields an overdiflferenced se- 

ries. For example, where there is only one unit root,2 applying the A = (1 - L) filter would be 

suflBcient to make the series trend stationary, while deterministic seasonality could be handled 

by the inclusion of seasonal dummies. This overdifferencing may cause problems in the con- 

struction of time series models because the (partial) autocorrelation pattern becomes hard to 

interpret. Furthermore, estimation problems may occur because of the introduction of moving 

average polynomials with roots close to the unit circle. On the other hand, underdifferenced 

series may yield unit roots in their autoregressive parts, and classical arguments such as those 

provided by Granger and Newbold (1974), for time series containing neglected unit roots may 

apply. So, again, it seems to be important to test for (seasonal) unit roots. 

The objective of this paper is to attempt to make a contribution by discussing the applica- 

tion of a testing procedure to determine the seasonal properties of a set of monthly Brazilian 

monetary series. This kind of empirical study necessarily precedes any further analysis ofthe 

seasonality of any monthly series and any cointegration analysis where such series are included. 

In Section 2 we present three typical seasonal models used in empirical work. Section 3 

provides a brief discussion of unit root tests including the so-called zero frequency unit root 

1 L is the usual lag operator. 

2 In some cases there is a single seasonal unit root, requiring the use of a specific filter, e.g. in Abraham and Box's analysis 

ofthe famous ^airline passengers' series (1978). 
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tests, the seasonal unit root tests for quarterly data, and the corresponding tests for monthly 

data that are used in this paper. The description of the Brazilian monetary series used in this 

paper and the results of the tests we performed, appear in Section 4, while the last section 

presents a summary of the paper and our conclusions. 

2 Modelling seasonal processes 

Several different time series models of seasonality can be applied. The most common fac- 

tors influencing selection are whether seasonal patterns can be represented by deterministic 

dummies or whether the series is seasonally integrated.3 These factors are related to the fol- 

lowing three classes of processes: purely deterministic seasonal processes, (covariance) sta- 

tionary processes, and integrated seasonal processes. 

The first class includes those processes generated by purely deterministic components such 

as a constant term and seasonal dummy variables. In the following (simple) example, variable 

yt - observed 5 times each year - is generated solely by seasonal intercept dummies:4 

yt =Yja'Di' + £' (i) 
i=l 

where the dummy variables Dit (/ = 1,2,...,^) take value 1 when t lies on season /, and zero 

otherwise, and st is a series of IID random variables. This equation can be reformulated so as 

to avoid confounding the levels and the seasonals, in the following way: 

s-\ 

yt=H + yjaiDi* + et n\ 

2=1 

where /r is the mean of the process and the coefficients are constrained to sum zero. In 

order to make this constraint operative, the Di'dummies are defined as 1 when t lies in sea- 

son /, -1 when t lies in season s and zero otherwise. Finally, the above equation may also 

include deterministic trends with constant or variable coefficients across seasons, 

3 The concept of 'seasonal integration' may mean different things to different authors. 

4 A more general model may include an autoregressive and/or a moving average component. 
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y, = >«+ ^cCiDi, + .[Di, y-g(t}] + £t (3) 

where g(t) is a deterministic polynomial in t.5 

The second class - covariance stationary seasonal processes - can be exemplified by the 

model expressed as 

If/7 = f in equation (4), we have a seasonal random walk, a process that exhibits a sea- 

sonal pattern which varies over time. This is the third class of seasonal processes referred to 

above. In that case, Asyi, defined as: 

is stationary. 

The main difference between these forms of seasonality is that in the deterministic and the 

stationary stochastic seasonal models, shocks die out in the long run while they have a perma- 

nent effect in the integrated model. That is to say, seasonally integrated processes have prop- 

erties similar to those observed in the ordinary (zero frequency) integrated series. As Hylleberg 

et al. have suggested, "they have 'long memory' so that shocks last forever and may in 

fact permanently change the seasonal patterns. They have variances which increase lin- 

early since the start of the series and are asymptotically uncorrelated with processes with 

other frequency unit roots." (1990, p. 218) 

Three different definitions of seasonal integration are proposed by Osborn et (1988), 

Engle etal. (1989) and Hylleberg etal. (1990). According to Osbom's definition, a variable is 

said to be integrated of order (d,D) - denoted I(df)) - if the series becomes stationary after 

first-differencing d times and seasonal differencing D times. That is to say, X ~ I(d,D) if 

yxpyt-s+s
l (4) 

where |p| < 1 

= y, -yt-s = £t (5) 

5 Note that all the above deterministic processes can be forecast and will never change their shape. 
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- L)d - LS)D Xt = Ad Ad
s Xt is stationary. Engle's definition states that a time series is in- 

tegrated of order and rf, denoted if - L)dQ[S{L)]d s X t = Ado[S{L)Ys Xt is 

stationary, where the polynomial expression£(1^ is defined as ^(L) = 1+ L + L2+...+L's~1 6 

When variables do not present seasonal integration, both definitions coincide, i.e., 1(1,0) = 

57(1,0), 7(2,0) = 57(2,0), etc. On the other hand, whenever a series is seasonally integrated 

these definitions differ. This is so because = (1 - Ls) can be factored into (1 - L)S{L). In 

this way, the equivalent of 7(0,1) is 57(1,1); 7(1,1) = SI(2,1), and so on. In the same way, the 

57(0,1) process - using Engle's definition - does not have an equivalent if we use Osborn's 

concept. 

Finally, Hylleberg's definition states that "a series xt is an integrated seasonal process if 

it has a seasonal unit root in its autoregressive representation. More generally it is inte- 

grated of order d at frequency 6 if the spectrum of xt takes the form 

f(co) = c(co-dr2d 

for near 0. This is conveniently denoted hyxt~I0{d)" (Hylleberg etal. 1990, p. 217) 

Engle's 57 definition will be the one used in this paper, because that is the definition used by 

Beaulieu and Miron (1993) (B&M from now on) whose methodology we used in our study. 

The strict interpretation of seasonal integration in any data-generating process implies that 

'summer may become winter' in the sense that the seasonal pattern may change dramatically. 

For this reason, the finding of one or more seasonal unit roots may indicate a varying and 

changing seasonal pattern, i.e., evidence against a constant seasonal pattern. As Hylleberg 

pointed out: 

whether the seasonal unit root is the result of variation and changes in 

seasonal causes like the weather, or seasonal mean shifts due to 

interdependencies between the business cycle and the seasonal pattern 

..., or of other changes is a question which requires a much deeper 

analysis than a univariate test can provide. (1992, p. 11) 

This polynomial is related to the decomposition of the (7-//) = 0 polynomial. 
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The interpretation of seasonal cointegration - as defined in Hylleberg etal (1990) - follows 

a similar line of reasoning and can indicate a parallel but varying seasonal component in a set 

of time series. 

For all the above reasons, the statistical techniques designed to test for seasonal integration 

deal with tests to check for the presence of unit roots. 

3 Unit root tests 

The detection of unit roots was first studied in relation to annual data (the so-called zero 

frequency). The extension of the resulting methodologies to include seasonal frequencies oc- 

curred in two stages - first in relation to quarterly data (zero plus three seasonal frequencies) - 

and later in relation to monthly data (zero plus eleven seasonal frequencies). As soon as the 

new methods became available, alternative procedures were proposed. In this way, not only 

parametric tests but also semiparametric, nonparametric and Bayesian techniques were devel- 

oped. For each of them the three-stage process was a natural development. Furthermore, in 

each case different possibilities were suggested concerning the form of the null and alternative 

hypotheses, not to mention a large number of different data generating processes. The consid- 

eration of broken trend alternative hypotheses added even more material to this huge body of 

research. 

The history of (non-seasonal) unit root tests started with Dickey and Fuller (1979) and the 

well-known Augmented Dickey-Fuller (ADF) test with a non-stationary model as the null hy- 

pothesis. 

The first test for seasonal integration resembled a generalisation of the ADF test for integra- 

tion in annual data. Dickey, Hasza and Fuller (1984) (DHF from now on), following the meth- 

odology suggested by Dickey and Fuller (1979) for the zero-frequency unit-root case, pro- 

posed a test of the hypothesis p= 1 against the alternative /?< 1 in the model ^ = pyts + £f 

The DHF test - as well as similar ones proposed in the following years - only allows for unit 

roots at all of the seasonal frequencies and has an alternative hypothesis which is considered 

rather restrictive, namely that all the roots have the same modulus. Trying to overcome these 

drawbacks Hylleberg et al. (1990) (from now on referred to as HEGY) proposed a more 

general testing strategy that allows for unit roots at some (or even all) of the seasonal frequen- 

cies as well as the zero frequency. HEGY's methodology allows testing for the existence of 

unit roots at some seasonal frequencies without arguing in favour of the presence of these kinds 

of roots at all seasonal frequencies. 
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3.1 Seasonal unit root tests with monthly data 

The HEGY (1990) procedure for quarterly data was extended in relation to monthly data 

in two different - though similar - directions. Franses (1991a, 1991b) discussed a method to 

distinguish empirically between models (2) and (5) presented above.7 In his second paper this 

author showed that conventional autocorrelation checks cannot generally make this distinction 

because they are not discriminative. He also showed that considering a model like (5), or simi- 

lar, when (2) is more appropriate yields a deterioration of forecasting performance. 

B&M (1993) used - in a slightly different way - the approach developed by HEGY to de- 

rive the mechanics of another procedure to test for seasonal unit roots using monthly data. 

These authors derived the asymptotics of HEGY's procedure for monthly data, and also com- 

puted the finite sample critical values of the associated test statistics using Monte Carlo meth- 

ods. The main difference compared with Franses' (1991a, 1991b) methodology is that B&M 

used mutually orthogonal regressors, obtaining a different - somewhat more complicated - test 

equation. 

Suppose that the series of interest (X) is generated by a general process like: 

12 

(piL)Z, = ^ + or/ + X (6) 
k-2 

where £t is a white noise process and the deterministic terms include a constant, a linear trend 

and seasonal dummies. The question examined by B&M was: 

whether the polynomial in the backshift operator, (p (L), has roots equal 

to one in absolute value at the zero or seasonal frequencies. In particu- 

lar, the goal is to test hypotheses about a particular unit root without 

taking a stand on whether other seasonal or zero frequency unit roots 

are present. (1993, p. 307) 

The auxiliary regression model that allows the test to be performed is provided by the fol- 

lowing equation: 

7 Actually, Franses' models are more general, since they include autoregressive and moving average parts, but the 
distinction between deterministic and stochastic seasonality is the same. 
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12 12 

(p{L)*Yl?>t = Og + (7) 

Ar=2 Ar=l 

where Ykt(k= 1,2, ..., 12) are auxiliary variables obtained by appropriately filtering the vari- 

able (JQ under study.8 The ^9 (Z)* polynomial is a remainder with roots outside the unit circle 

which allows the augmentation necessary to whiten the errors in the estimation of the above 

equation. "In order to test hypotheses about various unit roots, one estimates [the test 

equation] by Ordinary Least Squares and then compares the OLS statistics to the appro- 

priate finite sample distributions based on Monte Carlo results." (B&M, 1993, p. 309) 

The inclusion or not of a trend in the deterministic part of model (7) depends upon the hypoth- 

esised alternative to the null hypothesis of 12 unit roots. 

So, there are twelve possible unit roots, one non-seasonal and eleven seasonal. Out of the 

eleven seasonal unit roots one is real and the other ten form five pairs of complex conjugates.9 

B&M provide the asymptotic distribution of the statistics necessary to perform the tests: tv tv 

tk and K+v where A: G {3, 5, 7, 9,11} They also prove that the asymptotic distribution of the 

five t statistics are the same as those of the five t, 
* Ar+l' 

For ease of notation B&M considered that k is odd' if A: ^ 1 with k e {3,5,7,9,11} and 

that is 'even' if 2 with k e {4,6,8,10,12} • These authors studied the distributions of the 

/-statistics under different conditions; first, when no deterministic terms are included, and sec- 

ond when different combinations of constant, seasonal dummy and trend terms are included in 

the regression. Their theoretical results showed "that all of the odd statistics have the same 

distributions when different deterministic regressors are included in the regression. The 

same is true for the even statistics. One can also see that t] is invariant to the inclusion 

of seasonal dummies as long as a constant is included." (B&M, 1993, p. 315) They also 

showed that "because all odd t-statistics have the same distribution and all even t-statis- 

tics have the same distribution, all of the F-statistics have the same distribution for any 

set of included deterministic regressors." (B&M, 1993, p. 316) The distributions of/ ..., 

/]2are independent of a constant or a constant plus trend terms. The inclusion of any of these 

8 The definitions of these auxiliary variables are reproduced in Appendix I. For details see Hylleberg et al (1990) and 

B&M (1993). 

9 See Appendix I. 
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alternative sets of terms only modify the distribution of tv The finite sample distributions ob- 

tained by Monte Carlo methods display all the characteristics of the theoretical asymptotic dis- 

tributions. 

The test of the null hypothesis that there is a unit root in a given frequency is carried out 

by testing the significance of the corresponding ^coefficient, estimated with equation (7). The 

appropriate critical values for such tests are those provided by the finite sample distributions 

based on Monte Carlo results. 

If all the estimated coefficients are statistically different from zero, the series present a 

stationary seasonal pattern and no further filtering is necessary. In case tt. = 0, for i = 1, 

12, the series is seasonally integrated and it is appropriate to use the seasonal difference 

filter (1 -Z12). 

If only /Tj = 0, then the presence of a root equal to +1 at the zero frequency cannot be 

rejected. There will be no seasonal unit roots if 7r2 through nxl are significantly different from 

zero. When only some pairs of /r's are equal to zero, one should consider using the corre- 

sponding implied operators. Abraham and Box (1978) showed how these kinds of operators 

may sometimes be enough. 

To be more specific, the null about the presence of a unit root at the zero frequency is tested 

with the '7" statistic of the hypothesis /70. ^ = 0 (called tx by B&M). The null hypotheses 

about the existence of seasonal unit roots are tested, in each frequency, by means of the corre- 

sponding c7" statistic associated with //0. ;r = 0, for z = 2, 3, ..., 12, and/or by means of the 

"F" statistics corresponding to the joint hypotheses /70. n. = ;r+1, for z = {Sy 5, 7 9, 11} 

which take into account all pairs of conjugate complex roots.10 The significance tests for nx 

and n2 are one-sided as well as those corresponding to k. for "even' z. On the other hand, 

those corresponding to 'odd' values of z should be two-sided. 

4 Brazilian monetary series 

In this section we report on our testing of several Brazilian monetary series for the presence 

10 In the case of pairs of complex roots we reject the null hypothesis if any one of the 'Z' statistics is significant. 
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of seasonal unit roots. The series were Ml, M2, M3 and M4, Currency (issued currency), 

Reserves (bank reserves deposited in the Central Bank) and the Monetary Base. The source 

of the original data is the Internet site of the Brazilian Central Bank.11 The nominal values were 

expressed in 'reais' with constant purchasing power by means of the IGP/DI price index esti- 

mated by the Fundagao Getiilio Vargas. 

The definitions of these series are as follows. The end of month narrow money stock (Ml) 

is formed by the non-financial private sector holdings of currency plus demand deposits. M2 is 

equal to Ml plus Mutual Funds ('Fundos de Aplicagoes Financeiras') plus Money Market Ac- 

counts ('Fundos de Investimentos Financeiros-Curto Prazo'). Adding saving deposits to M2, 

we obtain M3. Finally, M4 is equal to M3 plus time deposits. The Monetary Base is formed 

by issued currency plus bank reserves deposited in the Central Bank. 

All these series, presented in Figures I and II, show a seasonal high level in December. This 

seasonality is explained mainly by the payment of a Christmas bonus (usually known as 'the 

thirteenth salary') to all employees across the country, and by the high consumption expenses 

related to the Christmas season. 

Starting in February 1986 several stabilisation plans were implemented in Brazil with the 

objective of fighting inflation. Most of these plans included a price and wage freeze and the 

elimination of automatic indexing based on past inflation. Because of their very nature, all these 

plans reduced the opportunity cost of holding currency and demand deposits. Consequently, in 

the months following each one of these plans, there occurred a fast and intense substitution of 

currency and demand deposits for non-monetary financial assets. In Figure I it is easy to ob- 

serve the monetisation of the economy in 1986 after the so-called 'Piano Cruzado F The dras- 

tic increase in Ml was also short-lived, since the 1986 increment disappeared in 1987 Start- 

ing in 1994, when the 'Piano Real' was implemented, the issuing of currency was severely tight- 

ened. Despite this control, Ml grew steadily after that year as the result of the monetisation of 

the economy. However, as the issuing of Treasury Bills and similar bonds grew considerably 

more in the same period, from that date on it is observed a strikingly fast increase in the M2, 

M3 and M4 series. 

11 The interested reader may obtain these series from the following e-mail address: aguirre@cepe.ecn.br. 
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Figure I 

Brazil - End of Period Money Supply in Real Terms 

Jan/1980-Dec/1999 
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Source: see text. 
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When the first stabilisation plans were implemented, the existence of a significant volume of 

demand deposits and currency increased the demand for real assets, stocks and foreign ex- 

change in such a way that the situation was not compatible with price stability. For this reason, 

when the Collor Plan was implemented in 1990 it was decided that, in addition to altering the 

monetary standard, a substantial share of the financial assets in the economy would be made 

temporarily non-convertible. The government froze this large share of all financial assets as a 

means of gaining control over the inflationary process. In other words, all bank accounts were 

temporarily seized up. The initial volume of resources seized by the Central Bank came to ap- 

proximately two thirds of the money supply in its broadest (M4) concept.12 This fact explains 

the violent decrease of the M2, M3 and M4 series in 1990 (see Figure I). 

12 See Bacen, 1990. 
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Figure n 

Brazil - End of Period Reserves, Issued Currency and Monetary Base in Real Terms 

Jan/1946-Dec/1999 
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For all these series we applied OLS to the auxiliary regression (7) in order to obtain the 

estimates of and the corresponding standard errors.13 The t-statistics calculated with these 

estimates are compared with the critical values from the small sample distributions based on 

Monte Carlo studies and published by B&M (1993) to perform the statistical tests. Table I 

presents a summary of the results obtained after performing the B&M tests in order to check 

for the integration of the series in its seasonal and nonseasonal parts, under the null hypotheses 

that the series are 57(1,1). 
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13 The truncation lag was chosen using the general to specific recursive method with kmax - 12. 
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Table I 

Regression Results to Test for Unit Roots 

Null 

Hypotheses 

M1 M2 M3 M4 Currency Base Reserves 

TTj = 0 -2.29 0.21 -0.32 0.37 0.68 0.32 -2.00 

O
 

II . 
<N -6.60* -3.39* ■3.37* -3.33* -3.86* -8.55* -7.29* 

LO
 II O

 

-3.88* -3.55* -3.52* -2.60 -5.38* -8.12* -7.50* 

o
 

II -5.05* -5.28* -5.63* -5.73* -3.93* -6.53* -5.11* 

^5 = o -5.75* -5.96* -5.93* -5.52* -5.57* -10.7* -8.25* 

O
 

11 L 
^ 

2.38* 3.59* 3.23* 2.83* 5.59* 1.03 -3.81* 

o
 

II 

bT
 -1.55 -2.33 -2.21 -2.18 -5.59* -5.29* -5.55* 

00
 II o

 

-5.55* -6.58* -6.76* -6.80* -5.75* -6.75* -5.99* 

n9=0 -8.38* -5.56* -5.70* -5.97* -5.78* -11.92* -11.75* 

O
 

II o
 

b
f 1.30 2.37* 2.17* 1.65 -1.91* 0.55 0.38 

n\\ = o 2.53 -1.00 -1.35 -1.56 1.99 0.37 -0.86 

71^2 — ^ -5.27* -7.01* -6.90* -7.13* -6.72* -10.92* -9.30* 

o
 

11 

bT
 

II L 
^ 

b^ 17.05* 22.17* 25.26* 20.99* 22.10* 59.09* 53.35* 

o
 

II b^ 

II . b^ 15.80* 20.05* 18.73* 19.97* 20.76* 57.58* 52.52* 

11 

00
 II o

 

11.79* 25.73* 26.66* 26.82* 27.52* 33.65* 27.18* 

o
 

ll o
 

b
f 

II b^ 36.60* 19.21* 19.58* 19.66* 19.25* 71.59* 69.08* 

II 

to
 II o

 

18.03* 25.50* 25.18* 27.07* 25.59* 59.69* 53.36* 

Lagged terms 0 0 0 0 2 0 1 

(*) Significant at 5% level. Critical values given by B&M (1993). 

The test regressions have a constant and eleven dummies. 

Source: see text. 

In the case of all seven series, the data rejected the presence of unit roots at all seasonal 

frequencies. However, the existence of a unit root at the zero frequency could not be rejected. 

These results imply that the seasonality present in these monthly series is partly deterministic 

and partly stationary stochastic and, as a consequence, no seasonal differencing is necessary in 

order to obtain stationarity. The presence of a nonseasonal unit root in each series, however, 

requires the use of first differences. 
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5 Summary and conclusions 

Non-adjusted quarterly (or monthly) economic time series showing seasonal patterns shed 

some doubts on the assumption of stationary first differences. The question of whether these 

seasonal patterns should be eliminated by regression on seasonal dummies (the 'deterministic' 

model) or by treating them with seasonal differences, thereby assuming the existence of addi- 

tional unit roots on the unit circle (the 'stochastic' model), resembles the old discussion of de- 

terministic and stochastic trend models. The existence of unit roots at the seasonal frequencies 

has similar implications for the persistence of shocks as in the case of the existence of a unit 

root at the zero frequency. 

The standard Box-Jenkins (1976) approach popularised the use of estimated 

autocorrelation functions to identify a tentative time series model. This method implies that the 

double differencing filter A A5 = (1 - L)(l - Ls) is useful to remove unit roots from a seasonal 

time series. This usually applied double differencing filter may be superfluous in some 

circunstances. If the double filter, or simply the A^ filter is required, the time series is said to be 

seasonally integrated. 

Since differencing filters assume the presence of one or more seasonal or non seasonal unit 

roots, most methods to test for an appropriate differencing filter are based on statistical tests 

for the presence of such unit roots. These tests are all extensions of the well-known Dickey- 

Fuller (1979, 1981) tests. B&M (1993) present a reformulation of an autoregression, isolating 

the key unit root parameters in the case of monthly data.14 Based on least-squares fits of 

univariate autoregressions on transformed variables similar to the augmented Dickey-Fuller re- 

gression, B&M developed tests for the existence of seasonal as well as zero-frequency unit 

roots in monthly data and tables of the corresponding critical values. 

In our analysis we used formal testing procedures that were put forward in the last decade 

to investigate the adequacy of the use of seasonal filters in the case of some Brazilian monthly 

monetary series. In particular, we used the methodology proposed by B&M (1993) to test for 

the presence of unit roots, be they at the zero or seasonal frequencies. We did not find any 

evidence in favour of seasonal integration, since we rejected unit roots at all the seasonal fre- 

quencies in all the series we considered. However, the presence of a unit root at the zero 

frequency could not be rejected in any case. All these results imply that the univariate repre- 

sentation of these monetary time series is a difference stationary process around a determinis- 

tic seasonal pattern represented by seasonal intercept dummies. 

14 They do so by expanding the procedures presented by Hylleberg et al. (1990) for quarterly data. 
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Appendix I - Seasonal unit roots 

If a series has a seasonal pattern, then the differencing which removes seasonality should be 

of degree ^ rather than one, i.e. an operator^ - yt_s should be applied rather than 3^ -yt_r 

Often 5-differencing also removes a trend - unless the trend is non-linear, in which case it may 

be necessary to take first differences of the ^-differences in order to make the series station- 

ary. 

In the case of monthly data, the characteristic equation (1 - L12) associated with the sea- 

sonal differencing operator has twelve roots on the unit circle. Using these unit roots, the poly- 

nomial can be written as the product of twelve factors each of them involving one of the roots. 

Based on this decomposition, and using Xto stand for the variable under analysis, the follow- 

ing auxiliary variables were defined and calculated in order to perform the tests reported in 

section 4:15 

Y\t = (l + L + L' + Z' + L' + .-' + L11)^ 

72, =-{\-L + L2-lJ +"--Ln)Xt 

73, = -(L -L' + L'-L1 + L9 - Lu)Xt 

74, = -(1 - L2 + L4 - L6 + L* - Ll0)Xt 

75, = -\{l+ L-2L2 + L3 + L4 -2L5 + L6 + L1 -2L* + L9 + L10 - 2Ln)Xt 

V3 
76, = —(1-L + L3 - L4 + L6 - L1 + L9 - Ll0)Xt 

77, = y(1- L - 2L2 - L3 + L4 + 2L5 + L6 - iJ - 21} - L9 + Z10 + 2Ln)Xt 

15 For details see Beaulieu and Miron (1993). Franses' (1991a, 1991b) alternative methodology uses only seven auxiliary 
variables to perform this test. 
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YZt=——{l + L-l}-LA + L6 + U-L9-Lxo)Xt 

Y9, - -7(1 - L- 21} -1} + Z,4 + 2Z,5 + L6-L1- 21* - L9 + L10 + 

Y9t = -7(1 - Z, - 21? - L3 + L* + 2L5 + L6 - L1 - 2L* - L9 + L10 + 2Lu)Xt 

no, = i(i - Vsz + 2L2 - Si? + la-l6 + Sl1 - 2L% + Sl9 - z!0)x, 

711, = \{S + Z - Z3 - V3Z4 - 2Z5 - V3Z6 - Z7 + Z9 - V3Z10 + 2Z11)x, 

712, = -id + V3Z + 21} + Sl} + Z4 - Z6 - Sl} - 21} - Sl9 - Lw)Xt 

The last auxiliary variable, defined as T13^ = (1 - LnyXp is the dependent variable in 

equation (7) of section 3.1. 

Abraham and Box (1978) factorise the (1 - Z12) operator in a different way: 

(l-Z12) = (1-V3Z + Z2)(1-Z + Z2)(1 + Z2)(1 + Z + Z2)(1 +V3Z + Z2)(1 + Z)(1-Z) 

The corresponding roots, periods and frequencies associated with each one of these fac- 

tors are given in a table that we reproduce below. 
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Table A1 

Factor Root Period Frequency in 

cycles per year 

1 1 - SL +1} (V3±z)/2 12 1 

2 \ - L + L2 
(l±/V3)/2 6 2 

3 1 + Z2 ± i 4 3 

4 l+L + L2 
(-l±iS)/2 3 4 

5 1 + VsZ, + L (-V3 ±z)/2 12/5 5 

6 l + L -1 2 6 

7 l-L 1 Constant 

Source: Abraham and Box (1978, p. 130). 
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