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Abstract
Grade control is a fundamental activity for Short-Term Mine Planning as it validates the ore-waste and ore type classifica-
tion of mine faces. Geological mapping and quasi-mining sampling provide indispensable information for the Short-Term 
Mine Planning team to update block models and for grade control of the run-of-mine (ROM). However, laboratory turn-
around can take too long and not be timely for operational needs, affecting mining efficiency. To propose a solution for this 
issue we tested the accuracy of portable X-Ray Fluorescence (XRF) for ore-waste and ore type classification according 
to iron and phosphorus grade. Thus, iron ore run-of-mine samples from the Quadrilátero Ferrífero were analyzed with the 
portable XRF as pressed pellets. As a result, the overall accuracy of ore-waste classification was above 92% for different 
cut-off grades. On the other hand, while ore type classification had a better accuracy without calibration factors for iron, the 
use of calibration factors significantly improved the accuracy of ore type classification for phosphorus. Therefore, despite 
the portable XRF presenting good accuracy for ore-waste and ore type classification, further developments are still neces-
sary on automatic information processing systems and sample support validation so that this analytical tool can be used on 
a large scale by grade control teams. Finally, the combined use of portable XRF and other techniques, such as Hyperspectral 
Sensing or XRD, can be of great value for mine operations.
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Resumo
O controle de qualidade é uma atividade fundamental para o Planejamento de Lavra de Curto Prazo, pois valida a clas-
sificação de minério-estéril e tipo de minério nas frentes de lavra. O mapeamento geológico e a amostragem de grande 
volume fornecem informações indispensáveis para a equipe de Planejamento de Mina de Curto Prazo atualizar os modelos 
de blocos e fazer o controle de qualidade do run-of-mine. No entanto, a resposta do laboratório pode levar muito tempo e 
não ser oportuna para as necessidades operacionais, afetando a eficiência da mineração. Para propor uma solução para esse 
problema, testamos a acurácia da espectrometria por Fluorescência de Raios X (FRX) portátil para classificação de miné-
rio-estéril e tipos de minério de acordo com o teor de ferro e fósforo. Assim, amostras de minério de ferro do Quadrilátero 
Ferrífero foram analisadas pela FRX portátil como pastilhas prensadas. Como resultado, a acurácia geral da classificação 
de minério-estéril foi superior a 92% para diferentes teores de corte. Por outro lado, enquanto a classificação dos diferentes 
tipos de minério teve uma melhor acurácia sem fatores de calibração para o ferro, o uso destes fatores melhorou significa-
tivamente a acurácia da classificação do tipo de minério em relação ao fósforo. Portanto, apesar da FRX portátil apresentar 
boa acurácia para o controle de qualidade, ainda são necessários mais avanços em relação a sistemas automatizados de 
processamento de informações e validação do suporte amostral para que esta ferramenta possa ser usada em larga escala 
pelas equipes de controle de qualidade. Finalmente, o uso combinado da FRX portátil e outras técnicas, como análise por 
Imagens Hiperespectrais ou Difratometria de Raios-X (DRX), pode ser de grande valia para as operações das minas.
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INTRODUCTION

Mining follows a sequence of planned activities defined 
by long- and short-term planning. In long-term planning, 
the deposit is divided into a block model with grades esti-
mated from data usually obtained by diamond drill holes 
(Figure 1A). Every year, part of the deposit is selected to 
be mined. In turn, the Short-Term Planning team provides 
more detailed geological mapping and sampling as new ore 
is exposed, helping to reduce uncertainty about block grades 
(Costa et al., 2001; Araújo et al., 2018).

Thus, geological mapping and quasi-mining sampling are 
of paramount importance for short-term planning, as they 
are used to update block models previously estimated with 
Long-Term Planning data (Figure 1B). These samples also 
provide information for the grade control team in order to 
plan ore blend and reach the quality specifications for run-
of-mine (ROM), maximizing the net present value, while 
minimizing deviations from desired production targets (Blom 
et al., 2019). For this procedure, it is necessary to obtain 
representative samples and use appropriate analytical pro-
tocols in the laboratory (Spangenberg and Minnitt, 2014). 

The time required to obtain the chemical results is of 
fundamental importance for updating block models, guar-
anteeing correct mining (e.g., waste to the waste dump and 
ore to a processing plant), adequate fleet allocation, and 
production rate. In some cases, the laboratory turnaround 
can be on the order of days due to the distance from the 
mine site or other reasons (Figure 1C). To propose a solu-
tion for this timing issue, we investigate the application of 
portable X-Ray Fluorescence (XRF) on ore-waste and ore 
type classification for iron ores, according to iron and phos-
phorus contents.

Different studies have been published related to the use 
of portable XRF in the mining industry. Gazley et al. (2014) 
presented how inconsistencies related to multiple geologists 
logging in a gold mine were solved by the development of 
an objective logging method based on portable XRF data. 
In another case study, the incorporation of portable XRF data 
in geological modeling improved its confidence level, as it 
allowed for better management of milling processes through 
the development of metallurgical proxies (Gazley et al., 2015).

In recent years, studies have been developed based on 
the application of different types of portable XRF for in-pit 

Figure 1. Workflow of (A) Long-Term Planning, (B) Short-Term Planning and (C) the processes related to sampling and assaying.
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grade control and ore-waste classification. Nayak et al. 
(2017) proposed the use of shovel based XRF sensors for 
selective partitioning of ore blocks, improving ore-waste 
discrimination and reducing processing costs by identifying 
and omitting material below the cut-off grade. Hawke and 
Bachmann (2018) presented a new XRF tool for blasthole 
logging. This tool aims at separating different sections of 
a hole based on its chemical composition, providing more 
detailed grade control and supporting selective mining.

The new approaches proposed here do not seek to match 
the accuracy of the portable XRF with conventional labora-
tory techniques, but to generate appropriate information for 
ore-waste separation and grade control. Therefore, portable 
XRF analyses of iron ore samples are compared to the labo-
ratory results and discussed according to the cut-off grade 
and ore type classification. 

GEOLOGICAL SETTING

The Quadrilátero Ferrífero (QFe) is a mineral province located 
on the southeastern border of the São Francisco Craton and 
comprises Archean metamorphic complexes consisting of 
gneisses, migmatites and granitoids, an Archean sedimentary 
sequence (Rio das Velhas Supergroup), and a Paleoproterozoic 
sedimentary sequence (Minas Supergroup) (Figure 2). The lat-
ter is composed by phyllites, quartzites, metaconglomerates, 
banded iron formations, and dolomites. This region went 

through two orogenic events, the Transamazonian orogeny 
at 2.1–2.0 Ga and the Brasiliano orogeny at 0.65–0.50 Ga 
(Alkmin and Marshak, 1998; Farina et al., 2016). This led 
to a complex deformation pattern and metamorphism that 
varies between greenschist in the east to amphibolite facies 
in the west. Itabirite is the metamorphosed equivalent of the 
banded iron formations and is found in a variety of com-
positions, including quartz itabirite, dolomitic itabirite, and 
amphibolitic itabirite (Rosière et al., 2008). 

The formation of high-grade iron deposits is related 
to a combination of hypogene and supergene processes. 
High‑grade ore bodies are found mainly in sites of low strain 
rates, such as large fold hinges, and faults worked as con-
duits for mineralizing fluids (Rosière et al., 2008). In most 
of the iron deposits of the QFe, the ore minerals are hema-
tite, magnetite, and goethite, and the main gangue minerals 
are quartz, kaolinite, and gibbsite. More rarely, carbonates, 
chlorite, amphibole, and biotite may also occur (Fernandes, 
2008; Ortiz, 2014).

The mine sampled for this study is located on the east-
ern limb of the Moeda Syncline, which is overturned. 
This deposit comprises discontinuous lenses of hematite 
with diversified geometries and dimensions that grade lat-
erally and with depth to quartz-rich itabirites (Fernandes, 
2008). In this mine, the itabirites are subdivided according 
to their composition and degree of compactness. The most 
common ore type is quartz itabirite and, when significantly 
enriched in iron, it is referred to simply as hematite.

Figure 2. Geological map of the QFe showing the main stratigraphic units, structures and samples location (modified after 
Farina et al., 2016).
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MATERIALS AND METHODS 

Twenty-five samples of itabirites were analyzed with a 
portable XRF and compared to the analysis performed by 
XRF-wave dispersive spectrometry (XRF-WDS) at the 
mine laboratory to evaluate the accuracy of ore-waste and 
ore type classification of the former. Samples provided by 
Vale S.A. are from a mine located in the western part of the 
QFe, Brazil, and collected during a Reverse Circulation (RC) 
drilling campaign. The portable XRF used was a VantaTM 
(VMR), M Series, with a workstation, both from Olympus. 
It is equipped with a silicon drift detector (SDD) and a 50 kV 
X-ray tube with Rhodium (Rh) anode.

All the samples were crushed and sieved below 1 mm 
and made into pressed pellets using the REFLEX Portable 
Press (Figure 3A). Then, the analyses were performed on 
the pressed pellets for one minute. The influence of the 
analysis duration on the results was evaluated by analyz-
ing Certified Reference Materials (CRM) for 30, 60, 90, 
and 120 seconds. As part of the Quality Assurance-Quality 
Control (QA-QC) protocol, a blank sample was tested at the 
beginning of the session and, if the result was acceptable, a 
batch of five samples followed by CRM, blank and dupli-
cate were analyzed (Figure 3B). CRM 010, 019, and 026 

used in this study are all from the QFe region and were pro-
duced by the company ITAK. The methodology of Stanley 
and Lawie (2007) was used to calculate the coefficient of 
variation, a parameter that allows to evaluate the quality of 
sample preparation.

Initially, the tests were performed without calibration 
factors. However, once the initial results were available, 
calibration factors were calculated for iron and phospho-
rus using the traditional regression equation, a first-order 
polynomial equation. Then, these factors were applied to 
the initial results and compared to the cut-off grade and ore 
type classification (Figure 3C).

We evaluated the influence of different cut-off grades on 
the accuracy of ore-waste classification for each calibration 
strategy, in order to evaluate the efficiency of the use of the 
portable XRF for this task. The use of the portable XRF for 
grade control was tested using an ore classification system 
based on the iron and phosphorus content (Table 1). This sys-
tem classifies the ore into ten types, which are related to 
the grade zones of each element. The codes related to each 
ore type were created so that these data could be correlated 
on the graphs presented later in this paper. Regarding the 
contaminants, phosphorus monitoring is critical as this del-
eterious element must only be present in low grades in the 

Figure 3. Workflow diagram of (A) sample preparation, (B) analysis protocol and data processing of portable X-ray 
fluorescence results for ore-waste and (C) ore type classification of itabirites.
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ROM (< 0.05%.). Also, concentration processes are not 
very efficient at removing it from iron ore, thus, requiring 
rigid control on the presence of this element during mining 
(Pereira and Papini, 2015).

RESULTS

First, data related to the calculation of calibration factors, 
sample preparation, and analytical time tests are presented 
to demonstrate that the bias related to the analyses is accept-
able for the objective of this study. Then, the portable XRF 
results are presented for ore-waste and ore type classifica-
tion, as proposed. The analytical results (Laboratory and 
portable XRF) and ore type classification of each sample 
are presented in Appendix 1.

Calibration factors

Calibration factors were calculated for iron and phospho-
rus using a regression equation based on the comparison 
of the results from the portable XRF and the Laboratory 
XRF. All data obtained were considered for the calcula-
tion of the calibration factor for phosphorus, since none 
of the samples presented concentrations below the limit of 

detection indicated by the manufacturer (0.005%). Also, all 
the analyses conducted with the portable XRF used in the 
dataset reached the full counting time required for precise 
measurement. Figure 4 illustrates the correlation between 
the Laboratory and portable XRF results. To help with com-
parison, the 1:1 line is also presented.

The slope of the regression line and the coefficient of 
determination (R2) indicate, respectively, good accuracy and 
fit for the iron results (R2 = 0.9951), whereas the phospho-
rus results are less accurate (R2 = 0.8708).

Regarding the iron content, the portable XRF analysis 
confirmed it, both for low and high values, around 20 and 
65%. Although the Phosphorus coefficient of determina-
tion was lower, it can also be considered a good result, 
since portable XRF analysis confirmed similar maximum 
and minimum results. 

Duplicates samples

The results for iron and phosphorus for five duplicate samples 
demonstrate the quality of sample preparation. The results 
for iron show relative difference of less than 5% between 
the primary and duplicate samples, which is a good result 
for a major element (Figure 5A). The mean coefficient of 
variation (CV) for iron is 1.19%.

Ore Classification System
Fe (%) Code P (%) Code

Very high > 60 1 Very low P < 0.050 6
High 50 < Fe < 60 2 Low 0.050 < P < 0.100 7

Intermediate 40 < Fe < 50 3 Intermediate 0.100 < P < 0.150 8
Low 30 < Fe < 40 4 High 0.150 < P < 0.200 9

Very Low < 30 5 Very high P > 0.200 10

Table 1. Classification system of different iron ore types according to iron (Fe) and phosphorus (P) grade.

Figure 4. Comparison of Laboratory X-ray fluorescence (XRF) and portable XRF results for (A) Iron and (B) Phosphorus.
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For phosphorus, the difference between the primary and 
duplicate samples is less than 10%, except for one sample 
which is slightly higher (Figure 5B). Although these results 
are statistically less robust than those for iron (CV = 8.47%), 
this is appropriate for minor elements such as Phosphorus. 
In this case, larger relative differences represent smaller 
absolute differences when compared to major elements.

The dashed line present in both graphs in Figure 5 rep-
resents relative differences of 5 and 10% for iron and phos-
phorus, respectively. The cone shape of the dashed lines in 
Figure 5B is due to its closeness to the origin of the graph.

Analytical time tests

Analytical time was important to test in order to find a bal-
ance between accuracy and productivity, so 30, 60, 90, and 
120 seconds were tested (Figure 6). Thus, the differences 

found for the results are relatively low: the mean CV of the 
three CRM is 0.56% for iron and 2.06% for phosphorus. 
This indicates close values for the different analytical times 
of the same CRM or, in other words, adequate precision.

Ore-waste classification and cut-off grade

Ore-waste definition depends on many technical factors, includ-
ing grade contaminants, grindability, mineral liberation and 
mass recovery at the processing plant. However, in this study, 
we restricted ore-waste and ore type classification to iron and 
phosphorus cut-off grades. Therefore, we evaluated the total 
number of samples classified as ore by the portable XRF for 
variable cut-off grades and compared them to the results from 
the laboratory. A straightforward observation is that ore-waste 
classification accuracy will vary depending on the calibra-
tion strategy applied to the portable XRF and on the cut-off 

Figure 5. Duplicate results for (A) Iron and (B) Phosphorus, the dashed lines indicate an error of ± 5% for Iron and ± 10% 
for Phosphorus. Analysis was performed by portable X-ray fluorescence.

Figure 6. Analytical time tests for (A) iron and (B) phosphorus with different Certified Reference Materials (010; 019; 026).
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grade (Figure 7). In this graphic, the reference curve was built 
with lab results while the other curves were built with results 
from the portable XRF using different calibration strategies. 

The accuracy of the portable XRF is related to the 
degree of similarity of its curves with the reference curve. 
Total accuracy (100% of correctness) is reached when the 

portable XRF and the reference curves overlap. A second 
graphic shows the number of samples correctly classified as 
ore or waste according to the cut-off grade and the impact 
of calibration strategy (Figure 8). 

The two calibration strategies used present differ-
ent levels of accuracy depending on the grade zone of 

NCF: no calibration factor; CF: calibration factor. 
Source: Modified after Araújo et al. (2018).

Figure 7. Total number of samples classified as ore according to the cut-off grade of (A) Iron and (B) Phosphorus. 
The reference curve was built with the results from the laboratory while the other curves represent the results from the 
portable X-ray fluorescence (XRF) using different calibration strategies. The accuracy of the portable XRF is related to the 
closeness of its curves to the reference curve.

NCF: no calibration factor; CF: calibration factor.

Figure 8. Samples correctly classified as ore or waste according to the cut-off grade for (A) iron and (B) phosphorus. The 
reference curve was built with the laboratory results whereas the others were created using the results of the portable 
X-ray fluorescence with different calibration strategies.
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iron (Figures 7A and 8A). For cut-off grades below 50% for 
iron, the results with no calibration factor (NCF) are bet-
ter adjusted to the reference curve, although there are local 
variations. Conversely, for cut-off grades ranging from 50 to 
58% of iron, the calibration factor (CF) curve presented the 
best fit, while from 58 to 70% of iron, NCF and CF curves 
had similar accuracy, although neither was totally accurate. 

For the phosphorus results, the CF curve had the best 
accuracy for cut-off grades ranging from 0.050 to 0.100% 
(Figure 7B), reaching total accuracy at the limits of this grade 
zone (Figure 8B). The CF curve still had the best accuracy 
for cut-off grades below 0.050 and above 0.100%, though 
it was not totally accurate (Figure 8B).

Therefore, the accuracy of the portable XRF for ore-
waste classification ranges from 96 to 100% for iron and 
from 92 to 100% for phosphorus, depending on the cut-off 
grade and the calibration strategy (Table 2). However, the 
mean accuracy is 98.91% for iron and 97.33% for phospho-
rus for this set of samples (Table 2).

Ore type classification

Grade control is extremely important to guarantee that quality 
specifications for the ROM are met. It provides information 

required to plan ore blends with different grades of iron and 
contaminants in order to maximize reserves and production. 
The ore type classification system used with the portable 
XRF results is depicted in Table 1.

Initially, all samples were analyzed with NCF and three 
samples were misclassified according to the iron grade 
(Figure 9A). Then, calibration factors were calculated with 
linear regression equations and applied to the initial results. 
This worsened the classification of the samples when com-
pared to the initial results, with five samples being misclas-
sified (Figure 9B). These results correspond to an accuracy 
for ore type classification of 88 and 80% for each calibra-
tion strategy, respectively.

For phosphorus, the analyses with NCF had worse results, 
with fifteen ore samples being misclassified (Figure 9C). 
In contrast, the ore type classification using the CF reached 
total accuracy (Figure 9D). The accuracy of these results 
corresponds to 40 and 100%, respectively.

DISCUSSION

Correct rock destination is extremely relevant for the profit-
ability of mine operations as ore processing and hauling are 
the most cost-intensive stages of a mining cycle (Lessard 
et al., 2014). The development of cheaper and more advanced 
sensors in the last few decades provides an opportunity for 
real-time monitoring of the ROM. This monitoring may be 
used to detect material heterogeneity in the pit and to sort the 
ore according to its composition, reducing processing costs, 
as less material below the cut-off grade is transported to the 
mineral processing plant (Nayak et al., 2017). Thus, portable 
XRF may be a powerful tool for effective and real-time grade 
control of the ROM. In the following part of this study, we 
will discuss the fitness of portable XRF data for this task, 
consider the possible sampling methods, and theoretically 
compare it to other analytical techniques.

Ore-waste and ore type classification accuracy

According to the results, the use of the portable XRF for 
ore-waste classification according to iron grade could have 
caused a loss of production of 4% for this group of samples 
in the worst case scenario (96% of accuracy for cut-offs of 
35, 60 and 65% of iron). It means that one block of ore, out 
of a total of 25, would not be transported to the processing 
plant. On the other hand, in the best scenario, all blocks 
would be transported to the correct destination. In the case of 
phosphorus, the situation would be very similar. In the worst 
case scenario, the loss of production would be of 8% (92% 
of accuracy for a cut-off of 0.075% of phosphorus), or two 
ore blocks would not be mined as planned and, in the best 
scenario, all blocks would be hauled to the correct destination.NCF: no calibration factor; CF: calibration factor.

Cut-off 
grade

Calibration 
strategy 
with best 
accuracy

Accuracy 
(%)

Samples 
classified as ore

Reference NCF CF

F
e 

(%
)

15 NCF; CF 100 25 25 25
20 NCF 100 24 24 23
25 NCF; CF 100 23 23 23
30 CF 100 22 23 22
35 NCF 96 22 21 19
40 NCF 100 15 15 11
45 NCF 100 10 10 7
50 NCF; CF 100 7 7 7
55 CF 100 5 7 5
60 CF 96 3 5 2
65 NCF; CF 96 1 2 0
Mean accuracy 98.91

P
 (%

)

0.025 NCF 96 5 4 8
0.05 CF 100 12 9 12
0.075 CF 92 18 11 16
0.1 CF 100 22 13 22
0.125 CF 96 24 18 25
0.15 CF 100 25 21 25
Mean accuracy 97.33

Table 2. Accuracy of ore-waste classification according to 
the cut-off grade and calibration strategy of the portable 
X-ray fluorescence for Iron and Phosphorus.
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Regarding the classification of the different ore types 
according to the iron grade, the accuracy did not improve 
after using the calibration factor, as five samples were mis-
classified instead of three (Figure 9). On the other hand, 
the application of CF in the phosphorus results made a sig-
nificant improvement, since all the samples were correctly 
classified. It indicates that different types of ores could be 
successfully blended in order to approach the chemical com-
position desired for production.

A possible reason for this difference in accuracy is that 
phosphorus has characteristic X-rays with much less energy 
(Kα = 2.01 keV and Kβ = 2.14 keV) than those of Iron 
(Kα = 6.4 keV and Kβ = 7.06 keV) due to its lower atomic 

mass. This makes it much harder to quantify phosphorus 
and other light elements, hence the need to use CFs.

Note that the accuracy of the ore type classification will 
also depend on the grade range defining the classes (rock 
type). The larger the grade range of each ore type, the greater 
the accuracy achieved in its classification.

Sample support for grade control

Another important matter for the use of portable XRF is 
sample support. In the iron ore mines at QFe, it is com-
mon practice to sample trenches dug with excavators on 
the mine faces. These quasi-mining samples are usually 

Figure 9. Classification plots for different ore types based on (A and B) iron and (C and D) phosphorus grades. The numbers 
indicate the ore codes of Table 1. Samples correctly classified must fall inside the squares.
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partly composed of coarse fragments which would need to 
be crushed and ground in the lab to make pressed pellets, 
then analyzed by portable XRF. This would be very time-
consuming. Alternatively, samples from blast holes present 
three advantages: 
•	 sample density is high due to relative closeness between 

the blast holes; 
•	 preparation time is shorter because samples are already 

ground; 
•	 there are no additional costs associated with sampling, 

as the blast hole must be drilled anyway.

However, sampling blast holes have some techni-
cal challenges that must be considered, such as the bias 
caused by density and particle size segregation (Snowden, 
1993). It has been demonstrated that this sampling tech-
nique can be fit-for-purpose for grade control of open-pit 
iron ore mines, but it is necessary to validate the method 
for each mine due to deposit heterogeneity (Engström and 
Esbensen, 2017). 

Portable XRF versus other analytical techniques

In the last few decades, some studies tested the applica-
tion of Hyperspectral Sensing for mineral mapping of 
mine faces (Fraser et al., 2006; Ramanaidou and Wells, 
2011; Dalm et al., 2017). Although it successfully deter-
mined areas rich in kaolinite, hematite, and goethite, 
this technique cannot determine the presence of delete-
rious elements (Si, Al or P) in the structure of goethite. 
Another knowledge gap is whether hyperspectral cameras 
have the ability to detect and quantify phosphates below 
0.5% in iron ore mine faces. Additionally, mine faces 
must be clean of dust or ex situ particles in order to be 
analyzed by Hyperspectral Sensing.

Regarding the use of X-Ray Diffractometry (XRD) 
for grade control of iron ores, it presents similar possibili-
ties and limitations as Hyperspectral Sensing. Although it 
provides semi-quantitative mineralogical analysis, it has a 
limit of detection of approximately 0.5% and it is not pos-
sible to determine mineral chemistry without the support of 
other techniques (Parian et al., 2015; Andrade et al., 2016; 
Urbano, 2017).

More recently, digital images of unmanned aerial vehi-
cles have been tested for automated lithological classifica-
tion (Beretta et al., 2019). In this case study, RGB color 
channels were used to classify the lithology according to its 
known colors through the application of Machine Learning 
algorithms, reaching an accuracy greater than 90%. On the 
other hand, the success of this technique for the discrimina-
tion of iron ore and waste according to phosphorus content 
may not be effective because the presence of phosphorous 
does not typically change the color of the rock. Mine faces 

must also be clean of transported particles so they can be 
correctly analyzed. Nevertheless, tests are necessary to 
evaluate the efficiency of this application.

Thus, as far as the results presented in this study have 
demonstrated, portable XRF can be a powerful tool for grade 
control in iron ore mines, especially those that contain zones 
with high phosphorous contents. Moreover, the use of this 
technology together with other analytical techniques that 
detect minerals, such as Hyperspectral Sensing or XRD, 
can quickly provide valuable information for grade control.

Future developments

Although the results of this study demonstrated that it is 
possible to reach good accuracy with the portable XRF for 
ore-waste and ore type classification, the application of 
ore classification systems on the results is not a straight-
forward process and still demands data to be exported and 
then processed manually. The development of software 
which could automatically apply ore classification sys-
tems on multiple analyses would increase the speed of the 
decision-making process. Additionally, the measurement 
of uncertainty related to portable XRF data could allow 
its integration into the deposit’s database and its use in the 
modeling process, decreasing estimation errors (Narciso 
et al., 2019).

The automatic integration of portable XRF data with 
cloud-based platforms combined with the use of Machine 
Learning and Big Data creates the opportunity for an unprec-
edented optimization of stochastic models. This could lead 
to fast uncertainty reduction and, in turn, would require new 
decision-making approaches for mine planning, such as adap-
tive state-dependent policies (Paduraru and Dimitrakopoulos, 
2018). This approach comprises a set of actions to be taken 
by mine operation and/or processing plant, which is updated 
in real time, based on new information collected by the por-
table XRF and uploaded into a cloud-based system (e.g., 
ore-waste classification).

CONCLUSIONS

Portable XRF can be successfully used for ore-waste and 
ore type classification of iron ores if correct calibration 
strategies are applied, in combination with appropriate 
sampling techniques and a QA/QC program. The imme-
diacy of portable XRF analysis represents an opportunity 
to provide real-time information for grade control, instead 
of using traditional methods that can take days to make data 
available. This is particularly valuable for iron ore mines 
with high phosphorus zones.

However, some technical challenges still need to be 
addressed before this technology can be operational for 
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grade control, such as sample support validation and auto-
mation of information processing. Portable XRF can be of 
great value especially when combined with other analytical 
techniques that can identify minerals on a large scale, e.g., 
Hyperspectral Sensing or XRD.
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