Physical modelling of post-salt deformations in inverted basins

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v20-157870

Keywords:

Physical modelling, Tectonic inversion of basins, Post-salt deformation, Resistance to brittle and ductile deformation

Abstract

This study analyzed in physical models, a positive tectonic inversion of basins with a salt layer in the post-rift sequence. The aim was to examine the influence of the strength variation of a ductile layer on the overburden deformation, varying the silicone putty (simulating salt) and the overburden thickness, and the inversion velocity. The trials were mounted on 35 × 23.4 cm (length × width) sandboxes, in which the basement (the pre-rift sequence) was simulated by a sandbox. After the distention phase and subsequent filling of the newly formed basin, the post-rift sequence was deposited: a sand substrate, a silicon layer and a sand overload. Cuts made on wet models after the final inversion deformation revealed that the number of overload failures varied significantly due to the variation of the tensile strength of both the ductile layer and the brittle overload. In the case of the silicone ductile layer, the creep resistance increased with increasing creep velocity while for the brittle sand sequence the creep resistance increased as the thickness of the overload increased. On the other hand, the increase in the thickness of the ductile layer produced a decrease in its creep resistance and accommodated the creep internally. The formation of ruptile structures in overload was associated with the development of pre- and sin-rift compressive failures, nucleated during inversion. Reactivation of normal failures only generated overload failures when characterized by high rejection. Similar features occur in the Tucumán Basin (Argentina).

Downloads

Download data is not yet available.

References

Adam, J., Urai J. L., Wieneke, B., Oncken, O., Pfeiffer, K., Kukowski, N., Lohrmann, J., Hoth, S., Van der Zee, Y, Schmatz, J. (2005). Shear localisation and strain distribution during tectonic faulting-new insights from granular-flow experiments and high-resolution optical image correlation techniques. Journal of Structural Geology, 27(2), 283-301. https://doi.org/10.1016/j.jsg.2004.08.008

Bonini, M. (2001). Passive roof thrusting and forelandward fold propagation in scaled brittle-ductile physical models of thrust wedges. Journal of Geophysical Research: Solid Earth, 106(B2), 2291-2311. https://doi.org/10.1029/2000JB900310

Bonini, M., Sani F., Antonielli, B. (2012). Basin inversion and contractional reactivation of inherited normal faults. Tectonophysics, 522, 55-88. https://doi.org/10.1016/j.tecto.2011.11.014

Brun, J. P., Nalpas, T. (1996). Graben inversion in nature and experiments. Tectonics, 15(3), 677-687. https://doi.org/10.1029/95TC03853

Carvalho, T. S. (2017). Cinemática e Geometria de Camadas Rúpteis e Dúcteis Sobre Sistema de Falhas Normais Reativado: Observações a Partir de Modelos Físicos de Caixa de Areia. Dissertação (Mestrado). Minas Gerais: Universidade Federal de Ouro Preto – UFOP.

Chadwick, R. A. (1993). Aspects of basin inversion in southern Britain. Journal of the Geological Society, 150(2), 311-322. https://doi.org/10.1144/gsjgs.150.2.0311

Del Ventisette, C., Montanari, D., Bonini, M., Sani, F. (2005). Positive fault inversion triggering ‘‘intrusive diapirism’’: an analogue modelling perspective. Terra Nova, 17(5), 478-485. https://doi.org/10.1111/j.1365-3121.2005.00637.x

Del Ventisette, C., Montanari, D., Sani, F., Bonini, M. (2006). Basin inversion and fault reactivation in laboratory

experiments. Journal of Structural Geology, 28(11), 2067-2083. https://doi.org/10.1016/j.jsg.2006.07.012

Dooley, T. P., Jackson, M. P. A., Jackson, C. A. L., Hudec, M. R., Rodriguez, C. R. (2015). Enigmatic structures within salt walls of the Santos Basind Part 2: Mechanical explanation from physical modelling. Journal of Structural Geology, 75, 163-187. https://doi.org/10.1016/j.jsg.2015.01.009

Dooley, T. P., McClay K. R., Hempton, M., Smit, D. (2005). Salt tectonics above complex basement extensional fault

systems: results from analogue modelling. Geological Society, London, Petroleum Geology Conference series, 6,

-1648. https://doi.org/10.1144/0061631

Dooley, T., McClay, K. R., Pascoe, R. (2003). 3D analogue models of variable displacement extensional faults: applications to the Revfallet Fault system, offshore mid-Norway. Geological Society, London, Special Publications, 212, 151-167. https://doi.org/10.1144/GSL.SP.2003.212.01.10

Ferrer, O., McClay, K. R., Sellier, N. C. (2016). Influence of fault geometries and mechanical anisotropies on the growth and inversion of hanging-wall synclinal basins: insights from sandbox models and natural examples. Geological Society, London, Special Publications, 439, 487-509. https://doi.org/10.1144/SP439.8

Gabrielsen, R. H., Sokoutis, D., Willingshofer, E., Faleide, J. I. (2016). Fault linkage across weak layers during extension: an experimental approach with reference to the Hoop Fault Complex of the SW Barents Sea. Petroleum Geoscience, 22, 123-135. https://doi.org/10.1144/petgeo2015-029

Gabrielsen, R. H., Zalmstra, H., Sokoutis, D., Willingshofer, E., Faleide, J. I., Braut, H. L. (2019). The influence of mechanically weak layers in controlling fault kinematics and graben configurations: Examples from analog experiments and the Norwegian continental margin. AAPG Bulletin, 103(5), 1097-1110. https://doi.org/10.1306/10261817077

Gomes, C. J. S. (2013). Investigating new materials in the context of analog-physical models. Journal of Structural Geology, 46, 158-166. https://doi.org/10.1016/j.jsg.2012.09.013

Grier, M. E., Salfity, J. A., Allmendinger, R. W. (1991). Andean reactivation of the Cretaceous Salta rift, northwestern Argentina. Journal of South American Earth Sciences, 4(4), 351-372. https://doi.org/10.1016/0895-9811(91)90007-8

Harvey, M. J., Stewart, S. A. (1998). Influence of salt on the structural evolution of the Channel Basin. Geological Society, London, Special Publications, 133(1), 241-266. https://doi.org/10.1144/GSL.SP.1998.133.01.11

Hubbert, M. K. (1937). Theory of scale as applied to the study of geologic structures. Bulletin of the Geological Society of America, 48(10), 1459-1520. https://doi.org/10.1130/GSAB-48-1459

Iaffa, D. N., Sàbat, F., Bello, D., Ferrer, O., Mon, R., Gutierrez, A. A. (2011). Tectonic inversion in a segmented foreland basin from extensional to piggy back settings: The Tucumán basin in NW Argentina. Journal of South American Earth Sciences, 31(4), 457-474. https://doi.org/10.1016/j.jsames.2011.02.009

Jackson, M. P. A., Vendeville, B. C. (1994). Regional extension as a geologic trigger for diapirism. Geological Society of America Bulletin, 106(1), 57-73. https://doi.org/10.1130/0016-7606(1994)106<0057:REAAGT>2.3.CO;2

Jordan, T. E., Isacks, B. L., Allmendinger, R. W., Brewer, J. A., Ramos, V. A., Ando, C. J. (1983). Andean tectonics related to geometry of subducted Nazca plate. Geological Society of America Bulletin, 94(3), 341-361. https://doi.org/10.1130/0016-7606(1983)94<341:ATRTGO>2.0.CO;2

Kley, J, Rossello, E. A., Monaldi, C. R., Habighorst, B. (2005). Seismic and field evidence for selective inversion of Cretaceous normal faults, Salta rift, northwest Argentina. Tectonophysics, 399(1-4), 155-172. https://doi.org/10.1016/j.tecto.2004.12.020

Koyi, H. A. (1995). Mode of internal deformation in sand wedges. Journal of Structural Geology, 17(2), 293-300.

https://doi.org/10.1016/0191-8141(94)00050-A Koyi, H. A., Petersen, K. (1993). Influence of basement faults on the development of salt structures in the Danish Basin. Marine and Petroleum Geology, 10(2), 82-94. https://doi.org/10.1016/0264-8172(93)90015-K

Lake, S. D., Karner, G. D. (1987).The structure and evolution of the Wessex Basin, southern England: an example of inversion tectonics. Tectonophysics, 137(1-4), 347-378. https://doi.org/10.1016/0040-1951(87)90328-3

Luján, M., Storti, F., Rossetti, F., Crespo-Blanc, A. (2006). Extrusion vs. accretion at the frictional–viscous decollement transition in experimental thrust wedges: the role of convergence velocity. Terra Nova, 18(4), 241-247. https://doi.org/10.1111/j.1365-3121.2006.00685.x

Marquillas, R. A., Papa, C., Sabino, I. F. (2005). Sedimentary aspects and paleoenvironmental evolution of a rift basin: Salta Group (Cretaceous–Paleogene), northwestern Argentina. International Journal of Earth Sciences, 94(1), 94-113. https:///doi.org/10.1007/s00531-004-0443-2

McClay, K. R., Ellis P. G. (1987). Analogue models of extensional faults geometries. Geological Society, London, Special Publication, 28(1), 109-125. https://doi.org/10.1144/GSL.SP.1987.028.01.09

Monaldi, C. R., Salfity, J. A., Kley, J. (2008). Preserved extensional structures in an inverted Cretaceous rift basin, northwestern Argentina: Outcrop examples and implications for fault reactivation. Tectonics, 27(1), 1-21. https://doi.org/10.1029/2006TC001993

Nalpas, T., Brun, J. P. (1993). Salt flow and diapirism related to extension at crustal scale. Tectonophysics, 228(3-4), 349-362. https://doi.org/10.1016/0040-1951(93)90348-N

Nalpas, T., Douaran, S. L., Brun, J. P., Unternehr, P., Richert, J. P. (1995). Inversion of the Broad Fourteens Basin (offshore Netherlands), a small-scale model investigation. Sedimentary Geology, 95(3-4), 237-250. https://doi.org/10.1016/0037-0738(94)00113-9

Pichot, T., Nalpas, T. (2009). Influence of synkinematic sedimentation in a thrust system with two decollement levels: analogue modelling. Tectonophysics, 473(3-4), 466-475. https://doi.org/10.1016/j.tecto.2009.04.003

Ruh, J. B., Kaus, B. J., Burg, J. P. (2012). Numerical investigation of deformation mechanics in fold‐andthrust belts: Influence of rheology of single and multiple décollements. Tectonics, 31(3), TC3005. http://doi.org/10.1029/2011TC003047

Smit, J. H. W., Brun, J. P., Sokoutis, D. (2003). Deformation of brittle‐ductile thrust wedges in experiments and nature. Journal of Geophysical Research: Solid Earth, 108(B10), 2480. https://doi.org/10.1029/2002JB002190

Soto, R., Casas-Sainz, A. M., Del Río, P. (2007). Geometry of half-grabens containing amid-level viscous décollement. Basin Research, 19(3), 437-450. https://doi.org/10.1111/j.1365-2117.2007.00328.x

Vendeville, B. C., Cobbold, P. R., Davy, P., Choukroune, P., Brun, J. P. (1987). Physical models of extensional tectonics at various scales. Geological Society, London, Special Publication, 28(1), 95-107. https://doi.org/10.1144/GSL.SP.1987.028.01.08

Vendeville, B. C., Ge, H., Jackson, M. P. A. (1995). Scale models of salt tectonics during basement-involved extension. Petroleum Geoscience, 1(2), 179-183. https://doi.org/10.1144/petgeo.1.2.179

Vendeville, B. C., Jackson, M. P. A. (1992). The fall of diapirs during thin-skinned extension. Marine and Petroleum Geology, 9(4), 354-371. https://doi.org/10.1016/0264-8172(92)90048-J

Weijermars, R., Jackson, M. P. A., Vendeville, B. C. (1993). Rheological and tectonic modeling of salt provinces. Tectonophysics, 217(1-2), 143-174. https://doi.org/10.1016/0040-1951(93)90208-2

Withjack, M. O., Callaway, S. (2000). Active Normal Fauting Beneath a Salt Layer: An Experimental Study of Deformation Patterns in the Cover Sequence. AAPG Bulletin, 84(5), 627-651. https://doi.org/10.1306/C9EBCE73-1735-11D7-8645000102C1865D

Published

2020-04-16

Issue

Section

Articles

How to Cite

Almeida, G. M. de S., & Gomes, C. J. S. (2020). Physical modelling of post-salt deformations in inverted basins. Geologia USP. Série Científica, 20(1), 3-17. https://doi.org/10.11606/issn.2316-9095.v20-157870