Trace-element composition of pyrite and its implications for hydrothermal process within the Mesoproterozoic metasedimentary sequences of the São Francisco Craton, northeastern Brazil

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v22-183067

Keywords:

Pyrite, Trace elements, Hydrothermal event, Tombador Formation, São Francisco Craton

Abstract

The distribution of trace elements in pyrite has been documented for the first time in quartz veins hosted in the Mesoproterozoic metasedimentary sequence of the Tombador Formation, São Francisco Craton, northeast Brazil. In this study, Electron Microprobe Analyses (EPMA) were used to determine the trace-element compositions of pyrite in these hydrothermal quartz veins. Three pyrite types have been distinguished and interpreted from petrographical relationships and trace-element patterns. Pre-existing pyrite (Py1), derived from the host-rock quartzite, is Ni-poor with concentrations varying from 600 – 6,100 ppm. Elongated syn-tectonic pyrite (Py2) has similar trace-element composition to the Py1, with Ni amounts ranging between 830 and 7,870 ppm. In contrast, possibly post-tectonic, euhedral to subhedral hydrothermal pyrite (Py3), contains higher contents of Ni (7,970 – 26,120 ppm). Mafic and/or metasedimentary rocks from the Espinhaço Supergroup were probably the source of Ni for this fluid-flow event. Fluid generation is related to  the devolatilization of the base of the thickened crust, with migration of fluids by preexisting structures. Several shear zones and large-scale NNW-trending folds were developed during the inversion of the Espinhaço basin, as a result of the ca. 0.6 Ga Brasiliano orogenic event. Regional fluid movement through the crust at this time is supported by several mineralized veins and hydrothermal deposits in the São Francisco Craton and adjacent Neoproterozoic belts.

Downloads

Download data is not yet available.

References

Agangi, A., Przybyłowicz, W., Hofmann, A. (2015). Trace element mapping of pyrite from Archean gold deposits – A comparison between PIXE and EPMA. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 348, 302-306. https://doi.org/10.1016/j.nimb.2014.11.070

Ague, J. J. (2014). Fluid flow in the deep crust. In: H. D. Holland, K. K. Turekian (Eds.). Treatise on Geochemistry, v. 4, p. 203-247. 2. ed. Los Angeles: Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00306-5

Alkmim, F. F., Brito Neves, B. B., Alves, J. A. C. (1993). Arcabouço tectônico do Cráton do São Francisco – uma revisão. In: J. M. Dominguez, A. Misi (Eds.). O cráton do São Francisco, p. 45-62. Salvador: SBG/Núcleo BA/SE/SGM/CNPq.

Almeida, F. F. M., Hasui, Y., Brito Neves, B. B., Fuck, R. A. (1981). Brazilian structural provinces: an introduction. Earth and Science Reviews, 17(1-2), 1-29. https://doi.org/10.1016/0012-8252(81)90003-9

Babinski, M., Brito-Neves, B. B., Machado, N., Noce, C. M., Ulhein, A., Van Schumus, W. R. (1994). Problemas na metodologia U/Pb em zircões de vulcânicas continentais: o caso do Grupo Rio dos Remédios, Supergrupo Espinhaço, no estado da Bahia. XXXVIII Congresso Brasileiro de Geologia, 409-410. Camboriú: Brazilian Geological Society.

Babinski, M., Pedreira, A. J., Brito Neves, B. B., Van Schmus, W. R. (1999). Contribuição à geocronologia da Chapada Diamantina. VII Simpósio Nacional de Estudos Tectônicos, 118-120. Recife: Brazilian Geological Society.

Babinski, M., Van Schmus, W. R., Chemale Jr., F., Brito Neves, B. B., Rocha, A. J. D. (1993). Idade isocrônica Pb/Pb em rochas carbonáticas da Formação Caboclo em Morro do Chapéu. II Simpósio sobre o Craton do São Francisco, 160-163. Salvador: Brazilian Geological Society.

Bállico, M. B., Scherer, C. M. S., Mountney, N. P., Souza, E. G., Reis, A. D., Raja Gabaglia, G. P., Magalhães, A. J. C. (2017). Sedimentary cycles in a Mesoproterozoic aeolian erg-margin succession: Mangabeira Formation, Espinhaço Supergroup, Brazil. Sedimentary Geology, 349, 1-14. https://doi.org/10.1016/j.sedgeo.2016.12.008

Brito, D. C. (2008). Geologia, petrografia e litogeoquímica dos diques máficos que ocorrem na porção sudoeste da Chapada Diamantina, Bahia, Brasil. Dissertation (Master). Bahia: Instituto de Geociências - UFBA.

Cabral, A. R., Eugster, O., Brauns, M., Lehmann, B., Rösel, D., Zack, T., Abreu, F. R., Pernicka, E., Barth, M. (2013). Direct dating of gold by radiogenic helium: testing the method on gold from Diamantina, Minas Gerais, Brazil. Geology, 41(2), 163-166. https://doi.org/10.1130/G33751.1

Cabral, A. R., Zeh, A., Galbiatti, H. F., Lehmann, B. (2015). Late Cambrian Au-Pd mineralization and Fe enrichment in the Itabira district, Minas Gerais, Brasil, at 496 Ma: constraints from U-Pb monazite dating of a Jacutinga lode. Economic Geology, 110(1), 263-272. https://doi.org/10.2113/econgeo.110.1.263

Cox, S. F. (2002). Fluid flow in mid- to deep crustal shear systems: Experimental constraints, observations on exhumed high fluid flux shear systems, and implications for seismogenic processes. Earth Planets Space, 54, 1121-1125. https://doi.org/10.1186/BF03353312

Craig, J. R., Vokes, F. M. (1993). The metamorphism of pyrite and pyritic ores-an overview. Mineralogical Magazine, 57(386), 3-18. https://doi.org/10.1180/minmag.1993.057.386.02

Cruz, S. C. P. (2004). A interação tectônica entre o aulacógeno do Paramirim e o orógeno Araçuaí-Oeste Congo. Thesis (Doctorate). Ouro Preto: Departamento de Geologia - UFOP.

Cruz, S. C. P., Alkmim, F. F. (2017). The Paramirim Aulacogen. In: M. Heilbron, U. G. Cordani, F. F. Alkmim (Eds.), São Francisco Craton, Eastern Brazil, v. 1, p. 97-115. Cham: Springer. https://doi.org/10.1007/978-3-319-01715-0

Cruz, S. C. P., Dias, V. M., Alkmim, F. F. (2007). A interação tectônica embasamento/cobertura em aulacógenos invertidos: um exemplo da Chapada Diamantina Ocidental. Revista Brasileira de Geociências, 37(4), 111-127. https://doi.org/10.25249/0375-7536.200737S4111127

Cruz, V. A., Cruz, S. C. P., Lobato, L. M., Rios, F. J., Santos, J. S., Lima, G. M. P. (2018). Structural control and hydrothermal evolution model of unusual, high-grade metasandstone-hosted iron deposits, Mesoproterozoic eastern Chapada Diamantina, Brazil. Ore Geology Reviews, 101, 221-272. https://doi.org/10.1016/j.oregeorev.2018.06.003

Da Costa, G., Hofmann, A., Agangi, A. (2017). Provenance of detrital pyrite in Archean sedimentary rocks: examples from the Witwatersrand Basin. In: R. Mazumder (Ed.), Sediment provenance: influences on compositional change from source to sink, v. 1, p. 509-531. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-803386-9.00018-6

Dias, J. C. S., Gonçalves, L., Gonçalves, C. C. (2019). Contrasting oxygen fugacity of I- and S-type granites from the Araçuaí orogen, SE Brazil: an approach based on opaque mineral assemblages. Mineralogy and Petrology, 113, 667-686. https://doi.org/10.1007/s00710-019-00670-2

Gonçalves, G. O., Lana, C., Buick, I. S., Alkmim, F. F., Scholz, R., Queiroga, G. (2019). Twenty million years of postorogenic fluid production and hydrothermal mineralization across the external Araçuaí orogen and adjacent São Francisco craton, SE Brazil. Lithos, 342-343, 557-572. https://doi.org/10.1016/j.lithos.2019.04.022

Gonçalves, G. O., Lana, C., Scholz, R., Buick, I. S., Gerdes, A., Kamo, S. L., Corfu, F., Marinho, M. M., Chaves, A. O., Valeriano, C., Nalini Jr., H. A. (2016). An assessment of monazite from the Itambé pegmatite district for use as U–Pb isotope reference material for microanalysis and implications for the origin of the “Moacyr” monazite. Chemical Geology, 424, 30-50. https://doi.org/10.1016/j.chemgeo.2015.12.019

Gonçalves, G. O., Lana, C., Scholz, R., Buick, I. S., Gerdes, A., Kamo, S. L., Corfu, F., Rubatto, D., Wiedenbeck, M., Nalini Jr., H. A., Oliveira, L. C. (2018). The diamantina monazite: a new low-Th reference material for microanalysis. Geostandards and Geoanalytical Research, 42(1), 25-47. https://doi.org/10.1111/ggr.12192

Guadagnin, F., Chemale Jr., F. (2015). Detrital zircon record of the Paleoproterozoic to Mesoproterozoic cratonic basins in the São Francisco Craton. Journal of South American Earth Sciences, 60, 104-116. https://doi.org/10.1016/j.jsames.2015.02.007

Guadagnin, F., Chemale Jr., F., Magalhães, A. J. C., Santana, A., Dussin, I., Takehara, L. (2015). Age constraints on crystal-tuff from the Espinhaço Supergroup – Insight into the Paleoproterozoic to Mesoproterozoic intracratonic basin cycles of the Congo-São Francisco Craton. Gondwana Research, 27(1), 363-376. https://doi.org/10.1016/j.gr.2013.10.009

Guimarães, J. T., Alkmim, F. F., Cruz, S. C. P. (2012). Supergrupos Espinhaço e São Francisco. In: J. S. F. Barbosa, J. F. Mascarenhas, L. C. C. Gomes, J. M. L. Dominguez, J. S. Souza (Eds.). Geologia da Bahia: pesquisa e atualização, v. 13, p. 33-85. Salvador: CBPM.

Guimarães, J. T., Martins, A. M., Andrade Filho, E. L., Loureiro, H. C., Arcanjo, J. B., Neves, J. P., Abram, M. B., Silva, M. G., Melo, R. C., Bento, R. V. (2005). Projeto Ibitiara-Rio de Contas: estado da Bahia. Escala 1:200.000. Salvador: Programa Recursos Minerais do Brasil/CPRM.

Guimarães, J. T., Santos, R. A., Melo, R. C. (2008). Geologia da Chapada Diamantina Ocidental (Projeto Ibitiara–Rio de Contas). Salvador: Companhia Baiana de Pesquisa Mineral – CBPM/Companhia Pesquisa de Recursos Minerais – CPRM. Série Arquivos Abertos, 31, 64.

Johnson, J. E., Gerpheide, A., Lamb, M. P., Fischer, W. W. (2014). O2 constraints from Paleoproterozoic detrital pyrite and uraninite. Geological Society of America Bulletin, 126(5-6), 813-830. https://doi.org/10.1130/B30949.1

Large, R. R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S., Scott, R., Emsbo, P., Thomas, H., Singh, B., Foster, J. (2009). Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in Orogenic and Carlinstyle sediment-hosted deposits. Economic Geology, 104(5), 635-668. https://doi.org/10.2113/gsecongeo.104.5.635

Large, R. R., Maslennikov, V. V. (2020). Invisible gold paragenesis and geochemistry in pyrite from orogenic and sediment-hosted gold deposits. Minerals, 10(4), 339. https://doi.org/10.3390/min10040339

Large, R. R., Thomas, T., Craw, D., Henne, A., Henderson, S. (2012). Detrital pyrite as a source for metals in orogenic gold deposits, Otago Schist, New Zealand. New Zealand Journal of Geology and Geophysics, 55(2), 137-149. https://doi.org/10.1080/00288306.2012.682282

Lindgren, W. (1933). Mineral Deposits. New York: McGraw-Hill.

Magalhães, A. J. C., Raja Gabaglia, G. P., Scherer, C. M. S., Bállico, M. B., Guadagnin, F., Bento Freire, E., Silva Born, L. R., Catuneanu, O. (2016). Sequence hierarchy in a Mesoproterozoic interior sag basin: from basin fill to reservoir scale, the Tombador Formation, Chapada Diamantina Basin, Brazil. Basin Research, 28(3), 393-432. https://doi.org/10.1111/bre.12117

Magalhães, A. J. C., Scherer, C. M. S., Raja Gabaglia, G. P., Bállico, M. B., Catuneanu, O. (2014). Unincised fluvial and tide-dominated estuarine systems from the Mesoproterozoic Lower Tombador Formation, Chapada Diamantina basin, Brazil. Journal South American Earth Science, 56, 68-90. https://doi.org/10.1016/j.jsames.2014.07.010

Magalhães, A. J. C., Scherer, C. M. S., Raja Gabaglia, G. P., Catuneanu O. (2015). Mesoproterozoic delta systems of the Açuruá Formation, Chapada Diamantina, Brazil. Precambrian Research, 257, 1-21. https://doi.org/10.1016/j.precamres.2014.11.016

Mancktelow, N. S. (2006). How ductile are ductile shear zones? Geology, 34(5), 345-348. https://doi.org/10.1130/G22260.1

Pedreira da Silva, A. J. C. L. (1994). O Supergrupo Espinhaço na Chapada Diamantina Centro-Oriental, Bahia: sedimentação, estratigrafia e tectônica. Thesis (Doctorate). São Paulo: Instituto de Geociências - USP. https://doi.org/10.11606/T.44.1994.tde-10112015-155542

Pedrosa-Soares, A. C., Campos, C. P., Noce, C., Silva, L. C., Novo, T., Roncato, J., Medeiros, S., Castañeda, C., Queiroga, G., Dantas, E., Dussin, I., Alkmim, F. (2011). Late Neoproterozoic–Cambrian granitic magmatism in the Araçuaí orogen (Brazil), the Eastern Brazilian Pegmatite Province and related mineral resources. Geological Society of London, Special Publications, 350, 25-51. https://doi.org/10.1144/SP350.3

Roberts, F. I. (1982). Trace element chemistry of pyrite: A useful guide to the occurrence of sulfide base metal mineralization. Journal of Geochemical Exploration, 17(1), 49-62. https://doi.org/10.1016/0375-6742(82)90019-X

Santos, M. M., Lana, C., Scholz, R., Buick, I. S., Kamo, S. L., Corfu, F., Queiroga, G. (2020). LA-ICP-MS U-Pb dating of rutiles associated with hydrothermal mineralization along the southern Araçuaí Belt, SE Brazil. Journal of South American Earth Sciences, 99, 102502. https://doi.org/10.1016/j.jsames.2020.102502

Schobbenhaus, C. (1996). As tafrogêneses superpostas Espinhaço e Santo Onofre, Estado da Bahia: revisão e novas propostas. Revista Brasileira de Geociências, 26(4), 265-276. https://doi.org/10.25249/0375-7536.19964265276

Schobbenhaus, C., Kaul, P. T. (1971). Contribuição à estratigrafia da Chapada Diamantina Bahia-Central. Mineração e Metalurgia, 53(315), 116-120.

Schobbenhaus, C., Hoppe, A., Baumann, A., Lork, A. (1994). Idade U/Pb do vulcanismo Rio dos Remédios, Chapada Diamantina, Bahia. XXXVIII Congresso Brasileiro de Geologia, 2, 397-398. Camboriú: SBG.

Silveira, E. M., Söderlund, U., Oliveira, E. P., Ernst, R. E., Leal., A. B. M. (2013). First precise U–Pb baddeleyite ages of 1500 Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications. Lithos, 174, 144-156. https://doi.org/10.1016/j.lithos.2012.06.004

Taylor, K. G, Macquaker, J. H. S. (2000). Early detrital pyrite morphology in a mudstone-dominated succession: the Lower Jurassic Cleveland Ironstone Formation, eastern England. Sedimentary Geology, 131(1-2), 77-86. https://doi.org/10.1016/S0037-0738(00)00002-6

Teixeira, J. B. G., Silva, M. G., Misi, A., Cruz, S. C. P., Sá, J. H. S. (2010). Geotectonic setting and metallogeny of the northern São Francisco craton, Bahia, Brazil. Journal of South American Earth Sciences, 30(2), 71-83. https://doi.org/10.1016/j.jsames.2010.02.001

Teixeira, L. R. (2008). Projeto Barra-Oliveira dos Brejinhos. Relatório Temático de Litogeoquímica. Brasil: Programa Recursos Minerais do Brasil.

Teixeira, W., Sabaté, P., Barbosa, J., Noce, C. M., Carneiro, M. A. (2000). Archaean and Paleoproterozoic tectonic evolution of the São Francisco Craton. In: U. G. Cordani, E. J. Milani, A. Thomaz Filho, D. A. Campos (Eds.), Tectonic evolution of South America, v. 1, p. 107-137. 31st International Geological Congress. Rio de Janeiro.

Thomas, H. V., Large, R. R., Bull, S. W., Maslennikov, V., Berry, R. F., Fraser, R., Froud, S., Moye, R. (2011). Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo Gold Mine, Australia: insights for ore genesis. Economic Geology, 106(1), 1-31. https://doi.org/10.2113/econgeo.106.1.1

Varjão, L. M. P., Leal, A. B. M. (2019). Geoquímica dos diques máficos de Brumado, porção sudeste do Bloco Gavião, Bahia, Brasil. Geologia USPo Série Científica, 19(3), 237-252. https://doi.org/10.11606/issn.2316-9095.v19-144710

Vasconcelos, A. D., Gonçalves, G. O., Lana, C., Buick, I. S., Kamo, S. L., Corfu, F., Scholz, R., Alkmim, A., Queiroga, G., Nalini Jr., H. A. (2018). Characterization of xenotime from Datas (Brazil) as a potential reference material for in situ U-Pb geochronology. Geochemistry, Geophysics, Geosystems, 19(7), 2262-2282. https://doi.org/10.1029/2017GC007412

Warr, L. N. (2021). IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. https://doi.org/10.1180/mgm.2021.43

Downloads

Published

2022-03-31

Issue

Section

Articles

How to Cite

Melo, M. G. de, Moreira, Éder C., Simplicio, F., Queiroga, G. N., D’Agostim, L. G., & Castro, M. P. de. (2022). Trace-element composition of pyrite and its implications for hydrothermal process within the Mesoproterozoic metasedimentary sequences of the São Francisco Craton, northeastern Brazil. Geologia USP. Série Científica, 22(1), 93-108. https://doi.org/10.11606/issn.2316-9095.v22-183067