Petrography, mineral chemistry, and lithochemistry of Riacho Salgado augen gneiss (Lajes/RN), Northest of Borboreme Province

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v22-189990

Keywords:

igneous protolith, paleoproterozoic, caicó complex, metamorphism

Abstract

Paleoproterozoic magmatism in the Borborema Province has been studied for a better understanding of the most important period in the formation of the Earth’s crust. In this context, this work presents petrographic, mineral chemistry, and lithochemistry data for the Ryacian Riacho Salgado augen gneiss (augen gnaisse Riacho Salgado – AGRS), located in the urban area of Lajes, Rio Grande do Norte. These rocks show two metamorphic events, M2 and M3, with the development of different generations of minerals such as quartz, K-feldspar and plagioclase (three generations), as well as biotite, amphibole, titanite, and opaque minerals (two generations). Allanite, zircon, and apatite are considered protolith crystals. Epidote, chlorite, muscovite, and carbonates occur as a result of hydrothermal alteration. Opaque minerals are classified as magnetite, pyrite, and ilmenite. The chemistry of zircon and titanite (SEM-EDS) is indicative of a crustal granitic protolith, whereas biotite, enriched in the annite molecule, is compatible with a calc-alkaline signature. Amphiboles are classified as pargasite and magnesium-hornblende, of subalkaline to alkaline nature, while plagioclase corresponds to andesine. In lithochemistry, AGRS corroborates the igneous protolith and presents high-K (subalkaline) metaluminous and calcalkaline signatures, with positive Eu anomalies. In geotectonic terms, geochemistry suggests a syn-subduction continental arc environment, with high Sr and Ba contents. Therefore, the data compiled and presented in this study corroborate the most recent classification for the AGRS, immersed in the metaplutonic unit of the Caicó Complex.

Downloads

Download data is not yet available.

References

Abdel-Rahmam, A. M. (1994). Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. Journal of Petrology, 35(2), 525-541. https://doi.org/10.1093/petrology/35.2.525

Anderson, J. L., Smith, D. R. (1995). The effects of temperature and fO2 on the Alin-hornblende barometer. American Mineralogist, 80(5-6), 549-559. https://doi.org/10.2138/am-1995-5-614

Angelim, L. A. A., Nesi, J. R., Torres, H. H. F., Medeiros, V. C., Santos, C. A., Veiga Júnior, J. P., Mendes, V. A. (2006). Geologia e recursos minerais do Estado do Rio Grande do Norte. Escala 1:500.000. Texto explicativo dos mapas geológico e de recursos minerais do Estado do Rio Grande do Norte. Recife. Serviço Geológico do Brasil – CPRM.

Araújo, M. G. S., Brito Neves, B. B., Archanjo, C. J. (2001). Idades 40AR/39AR do magmatismo básico Meso-Cenozóico da Província Borborema oriental, Nordeste do Brasil. XIX Simpósio de Geologia do Nordeste. Resumos, p. 260-261. Natal: SBG - Núcleo Nordeste.

Barbalho, A. H. P. (1992). Mapeamento geológico de uma área a SE da Cidade de Lajes (RN). Relatório de Graduação. Porto Alegre: Universidade Federal do Rio Grande do Norte.

Barbosa, J. S. F., Fonteilles, M. (1989). Caracterização dos protólitos da região granulítica do sul da Bahia - Brasil. Revista Brasileira de Geologia, 19(1), 3-16.

Bohlen, S. R., Wall, V. J., Boettcher, A. L. (1983). Experimental investigations and geological applications of equilibria in the system FeO-TiO2-Al2O3-SiO2-H2O. American Mineralogist, 68(11-12), 1049-1058.

Breiter, K., Skoda, R. (2017). Zircon and whole-rock Zr/Hf ratios as markers of the evolution of granitic magmas: Examples from the Teplice caldera (Czech Republic/Germany). Mineralogy and Petrology, 111, 435-457. https://doi.org/10.1007/s00710-017-0509-z

Cavalcante, R., Medeiros, V. C., Dantas, A. R., Costa, A. P., Cunha, A. P. C., Sá, J. M., Rodrigues, J. B. (2017). Isotopia das rochas U-Pb das rochas arqueanas e paleoproterozoicas e C-O das rochas neoproterozoicas do furo estratigráfico do depósito de ferro de saquinho (Cruzeta, RN). XXVII Simpósio de Geologia do Nordeste. João Pessoa: SBG.

Cavalcante, R., Medeiros, V. C., Dantas, A. R., Costa, A. P., Cunha, A. P. da C., Sá, J. M., Rodrigues, J. B., Dantas, A. R., Nascimento, M. A. L., Cunha, A. L. C. (2018). Neoarchean, Rhyacian and Neoproterozoic units of the Saquinho region, eastern Rio Piranhas-Seridó domain, Borborema Province (northeastern Brazil): implications for the stratigraphic model. Journal of the Geological Survey of Brazil, 1(1), 11-29. https://doi.org/10.29396/jgsb.2018.v1.n1.2

Celis, A. (2015). Titanite as an indicator mineral for alkalic Cu-Au porphyry deposits in south central British Columbia. Tese (Doutorado). Vancouver: University of British Columbia.

Comin-Chiaramonti, P., Mantovani, M. S. M. (2015). Tópicos especiais em petrologia magmática. Geologia USP. Série Didática, 4, 3-73. https://doi.org/10.11606/issn.2316-9109.v4i0p3-73

Condie, K. C., Kroner, A. (2013). The building blocks of continental crust: Evidence of a major chance in the tectonic setting of continental growth at the end of Archean. Gondwana Research, 23(2), 394-402. https://doi.org/10.1016/j.gr.2011.09.011

Costa, A. P., Dantas, A. R. (2014). Programa Geologia do Brasil-PGB. Lajes. Folha SB.24-X-D-VI. Estado do Rio Grande do Norte. Carta Geológica e de Recursos Minerais, mapa colorido, 90 x 70cm. Escala 1:100.000. Recife: CPRM.

Costa, A. P., Dantas, A. R. (2018). Programa Geologia do Brasil-PGB. Lajes. Folha SB.24X-D-VI. Estado do Rio Grande do Norte. Escala 1:100.000. Texto explicativo dos mapas geológico e de recursos minerais. Recife: Serviço Geológico do Brasil – CPRM.

Dall’Agnol, R., Oliveira, D. C. (2007). Oxidized, magnetiteseries, rapakivi-type granites of Carajás, Brazil: implications for classification and petrogenesis of A-type granites. Lithos, 93(3-4), 215-233. https://doi.org/10.1016/j.lithos.2006.03.065

Deer, W. A., Howie, R. A., Zussman, J. (1992). An introduction to the rockforming minerals. Hong Kong: Longman Scientific & Technical. v. 2.

De La Roche, H., Leterrier, J., Grandclaude, P., Marchal, M. (1980). A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analyses. Its relationship with current nomenclature. Chemical Geology, 29(1-4), 183-210. https://doi.org/10.1016/0009-2541(80)90020-0

Ebert, H. (1969). Geologia do Alto Seridó: nota explicativa da folha geológica de Currais Novos. Recife: SUDENE. 120p. (Série Geologia Regional, 11).

Ferreira, C. A. (1998). Programa Levantamentos Geológicos Básicos do Brasil. Caicó. Folha SB.24-Z-B - Estados da Paraíba e Rio Grande do Norte. Escala 1:250.000. Brasília: CPRM.

Ferreira, J. A. M., Albuquerque, J. P. T. (1969). Sinopse da geologia da Folha Seridó: Série Geologia Regional. Recife: Superintendência do Desenvolvimento do Nordeste/SUDENE, 18, 52.

Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., Frost, C. D. A. (2001). Chemical classification for granitic rocks. Journal of Petrology, 42(11), 2033-2048. https://doi.org/10.1093/petrology/42.11.2033

Harlov, D. E., Wirth, R. (2000). K-feldspar-quartz and K-feldspar-plagioclase phase boundary interactions in garnetothopyroxene gneiss’s from the Val Strona di Omegna, Ivrea-Verbano Zone, northern Italy. Contributions to Mineralogy and Petrology, 140, 148-162. https://doi.org/10.1007/s004100000185

Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F., Schumache, J. C., Welch, M. D. (2012). IMA report nomeclature of the anphibole supergroup. American Mineralogist, 97(11-12), 2031-2048. https://doi.org/10.2138/am.2012.4276

Henderson, P. (1984). Rare Earth Elements Geochemistry. Developments in Geochemistry. Amsterdam: Elsevier. v. 2. 510 p.

Holland, T., Blundy, J. (1994). Non-ideal interactions in calcic amphiboles and their bearing on amphiboleplagioclase thermometry. Contributions to Mineralogy and Petrology, 116, 433-47. https://doi.org/10.1007/BF00310910

Hollanda, M. H. B. M., Archanjo, C. J., Souza, L. C., Dunyi, L., Armstrong, L. (2011). Long-lived Paleoproterozoic granitic magmatism in the Seridó-Jaguaribe domain, Borborema Province-NE Brazil. Journal of South American Earth Sciences, 32(4), 287-300. https://doi.org/10.1016/j.jsames.2011.02.008

Jardim de Sá, E. F. (1994). A Faixa Seridó (Província Borborema, NE do Brasil) e o seu significado geodinâmico na Cadeia Brasiliana/Pan-Africana. Tese (Doutorado). Brasília: Universidade de Brasília.

Jardim de Sá, E. F., Legrand, J. M., Hackspacher, P. C. (1981). Estratigrafia de rochas granitóides na região do Seridó (RNPB), com base em critérios estruturais. Revista Brasileira de Geociências, 11(1), 50-57.

Johannes, W. (1988). What controls partial melting in migmatites? Journal of Metamorphic Geology, 6(4), 451-465. https://doi.org/10.1111/j.1525-1314.1988.tb00433.x

Johannes, W., Holtz, F., Moller, P. (1995). REE distribution in some layered migmatites: constraints on their petrogenesis. Lithos, 35(3-4), 139-152. https://doi.org/10.1016/0024-4937(95)00003-X

Kowallis, B. J., Christiansen, E. H., Griffen, D. T. (1997). Compositional variations in titanite: Geological Society of America Abstracts with Programs, 29(6), 402.

Lameyre, J. (1987). Granites and evolution of the crust. Revista Brasileira de Geociências, 17(4), 349-359.

Lappin, A. R., Hollister, L. S. (1980). Partial melting in the Central Gneiss Complex near Prince Rupert, British. Columbia American Journal of Science, 280, 518-545. https://doi.org/10.2475/ajs.280.6.518

Marc, D. N., Mertzman, S., Leeman, W. P. (1992). Granites and rhyolites from the northwestern U.S.A.: Temporal variation in magmatic processes and relations to tectonic setting. Transactions of the Royal Society of Edinburgh Earth Sciences, 83(1-2), 71-83. https://doi.org/10.1017/S0263593300007768

Medeiros, V. C., Cavalcante, R., Santos, F. G., Rodrigues, J. B., Santana, J. S., Costa, A. P., Neto, I. C. (2021). The Rio Piranhas-Seridó Domain, Borborema Province, Northeastern Brazil: Review of Geological-Geochronological Data and Implications for Stratigraphy and Crustal Evolution. Journal of the Geological Survey of Brazil, 4(3), 179-207. https://doi.org/10.29396/jgsb.2021.v4.n3.1

Medeiros, V. C., Nascimento, M. A. L., Galindo, A. C., Dantas, E. L. (2012). Augen gnaisses riacianos no Domínio Rio Piranhas-Seridó – Província Borborema, Nordeste do Brasil. Geologia USP. Série Científica, 12(2), 3-14. https://doi.org/10.5327/Z1519-874X2012000200001

Menegon, L., Pennacchioni, G., Stunitz, H. (2006). Nucleation and growth of myrmekite during ductile shear deformation in metagranites. Journal of Metamorphic Geology, 24(7), 553-568. https://doi.org/10.1111/j.1525-1314.2006.00654.x

Middlemost, E. A. K. (1997). Magmas, rocks and planetary development. Harlow: Longman.

Molina, J. F., Scarrow, J. H., Montero, P.G., Bea, F. (2009). High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia. Contribution to Mineralogy and Petrology, 158, 69-98. https://doi.org/10.1007/s00410-008-0371-4

Norman, M. D., Leeman, W. P., Mertzman, S. (1992). Granites and rhyolites from the northwestern USA: temporal variation in magmatic processes and relations to tectonic settings. Transactions of Royal Society of Edinburgh: Earth Sciences, 83(1-2), 71-81. https://doi.org/10.1017/S0263593300007768

Passchier, C. W., Trouw, R. A. J. (1996). Micro-tectonics. Berlin: Heidelberg, Springer-Verlag.

Pearce, J. A., Peate, D. W. (1995). Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth Planet Science, 23, 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343

Reichardt, H., Weinberg, R. F. (2012). Hornblende Chemistry in Meta- and Diatexites and its Retention in the Source of Leucogranites: an Example from the Karakoram Shear Zone, NW India. Journal of Petrology, 53(6), 1287-1318. https://doi.org/10.1093/petrology/egs017

Reichardt, H., Weinberg, R. F., Andersson, U.B., Fanning, M. C. (2010). Hibridization of granitics magmas in the source: the origin of Karakoram Batholith, Ladakh, NW India. Lithos, 116(3-4), 249-272. https://doi.org/10.1016/j.lithos.2009.11.013

Rickwood, P. C. (1989). Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4), 247-263. https://doi.org/10.1016/0024-4937(89)90028-5

Rogers, J. J. M., Greenberg, J. K. (1981). Trace elements in continental-margin magmatism. Part III. Alkali granites and their relationship to crationization. GSA Bulletin, 92(1), 6-9. https://doi.org/10.1130/0016-7606(1981)92%3C6:TEICMP%3E2.0.CO;2

Ruiz, F. V., Giustina, M. E. S. D., Oliveira, C. G., Dantas, E. L., Hollanda, M. H. B. (2019). The 3.5 Ga São Tomé layered mafic-ultramafic intrusion, NE Brazil: Insights into a Paleoarchean Fe-Ti-V oxide mineralization and its reworking during West Gondwana assembly. Precambrian Research, 326, 462-478. https://doi.org/10.1016/j.precamres.2018.03.011

Shand, S. J. (1943). The Eruptive Rocks. 2nd edition. New York: John Wiley, 444 pp.

Simpson, C., Wintsch, R. P. (1989). Evidence for deformationinduced K-feldspar replacement by myrmekite. Journal of Metamorphic Geology, 7(2), 261-257. https://doi.org/10.1111/j.1525-1314.1989.tb00588.x

Souza, Z. S., Martin, H., Peucat, J. J., Jardim de Sá, E. F., Macedo, M. H. F. (2007). CalcAlkaline Magmatism At The Archean-Proterozoic Transition: The Caicó Complex Basement (Ne Brasil). Jounal of Petrology, 48(11), 2149-2185. https://doi.org/10.1093/petrology/egm055

Streckeisen, A. L. (1976). To each plutonic rock its proper name. Earth-Science Reviews, 12(1), 1-33. https://doi.org/10.1016/0012-8252(76)90052-0

Stussi, J. M., Cuney, M. (1996). Nature of Biotites from Alkaline, Calc-alkaline and Peraluminous Magmas by Abdel-Fattah M. Abdel-Rahman: A Comment. Journal of Petrology, 37(5), 1025-1029. https://doi.org/10.1093/petrology/37.5.1025

Sun, S. S., McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle compostion and processes. In: A. D. Saunders, M. J. Norry (Eds.). Magmatism in the Ocean Basins. Geological Society Special Publication, 42, 313-345.

Tarney, J., Jones, C. E. (1994). Trace elemento geochemistry of orogenic igneous rock and crustal growth models. Journal of the Geological Society, 151(5), 855-868. https://doi.org/10.1144/gsjgs.151.5.0855

Thiéblemont, D., Cabanis, B. (1990). Utilisation d’un diagramme (Rb/100)-Tb-Ta pour la discrimination géochimique et l’étude pétrogénétique des roches magmatiques acides. Bulletin de lá Societé Geólogique de France, 8, 23-35.

Thiéblemont, D., Tégyey, M. (1994). Une discrimation géochimique des roches différenciées témoin de la diversité d’origine et de situation tectonique des magmas calcoalcalins. Comptes rendus de l’Académie des Sciences Paris, II, 319, 87-94.

Van Baalen, M. R. (1993). Titanium mobility in metamorphic system: a review. Chemical Geology, 110(1-3), 233-249. https://doi.org/10.1016/0009-2541(93)90256-I

Verma, S. P., Verma, S. K. (2013). First 15 probabilitybased multidimensional tectonic discrimination diagrams for intermediate magmas and their robustness against postemplacement compositional changes and petrogenetic processes. Turkish Journal of Earth Sciences, 22(6), 931-995. https://doi.org/10.3906/yer-1204-6

Vernon, R. H., Clarke, G. L. (2008). Principles of Metamorphic Petrology. Cambridge: Cambridge University Press.

Voll, G. (1980). Ein Querprofil durch die Schweizer Alpen vom Vierwaldstaetter See zur Wurzelzone – Strukturen und ihre Entwicklung durch Deformationsmechanismen Wichtiger Minerale. Neues Jahrb Geol. Palaeont. Abh., 160(3), 321-335.

Wang, R. C., Fontan, F., Xu, S. J., Chen, X. M., Monchoux, P. (1996). Hafnian zircon from the apical part of the Suzhou granite, China. Canadian Mineralogist, 34(5), 1001-1010.

Weaver, B. L., Tarney, J. (1981). Lewisian gneiss geochemistry and Archaean crustal development models. Earth and Planetary Science Letters, 55(1), 171-180. https://doi.org/10.1016/0012-821X(81)90096-0

Weinberg, R. F., Hasalová, H. (2015). Water-fluxed melting of the continental crust: A review. Lithos, 212-215, 158-188. https://doi.org/10.1016/j.lithos.2014.08.021

Werner, C. D. (1987). Saxonian granulites: a contribution to the geochemical diagnosis of original rocks in high-metamorphic complexes. Gerlands Beitraege zur Geophysik, 96, 271-290.

Published

2022-11-10

Issue

Section

Articles

How to Cite

Guerra, D. G. F. ., Nascimento, M. A. L. do ., Vilalva, F. C. J. ., Costa, A. P. da ., & Dantas, A. R. . (2022). Petrography, mineral chemistry, and lithochemistry of Riacho Salgado augen gneiss (Lajes/RN), Northest of Borboreme Province. Geologia USP. Série Científica, 22(3), 61-84. https://doi.org/10.11606/issn.2316-9095.v22-189990