A-DInSAR technique applied to the surface displacements of the GW sector of the Brucutu mine – Quadrilátero Ferrífero

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v23-206428

Keywords:

Rainfall, Slope instabilities, Mine slopes

Abstract

The Brucutu mine is in the northeast portion of the Quadrilátero Ferrífero, in the municipality of São Gonçalo do Rio Abaixo, approximately 120 km east of Belo Horizonte, Minas Gerais. In this place, Vale S.A. operates one of the largest iron ore mines in Brazil. Iron ore is housed in itabirite and hematite bodies of the Cauê Formation. These rocks have different geomechanical behaviors, since they occur in contact with intrusive rocks and are breached, intensely foliated and strongly weathered. The slopes of the quotas 1,030 to 1,000, of the GW sector of the Brucutu pit, have been registering instabilities in recent years. The present study aimed to analyze the superficial displacements and discuss the probable controlling factors. The Advanced Differential Radar Interferometry (A-DInSAR) technique was used from images of the COSMO-SkyMed sensor in StripMap mode to monitor the displacements. The periods covered for the development of this work were from June 2018 to August 2019 and from June 2019 to November 2020. The images used were provided and processed by the company Telespazio Brasil. Orthoimages from Remotely Piloted Aircraft (RPA), field geological-geotechnical data, and rainfall data were also used. The results obtained through A-DInSAR monitoring show that considerable displacement rates (up to -76.3 mm/year) were identified in the rainy season. The instabilities present in the study area are conditioned by the following factors: contact between intrusive rocks (IN) and friable itabirite (FI); unfavorable attitude of foliation; and high rainfall rates that produce the dismantling (erosion) of the slope face. 

Downloads

Download data is not yet available.

References

Alkmim, F. F., Marshak, S. (1998). Transamazonian orogeny in the in the Southern São Francisco craton region, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Research, 90(1-2), 29-58. https://doi.org/10.1016/S0301-9268(98)00032-1

Almeida, L. G. (2003). Evolução Tectônica da porção central do sinclinal Dom Bosco, Quadrilátero Ferrífero – Minas Gerais. Dissertação (Mestrado). Ouro Preto: Departamento de Geologia da Universidade Federal de Ouro Preto.

ANM – Agência Nacional de Mineração (2020). Anuário Mineral Brasileiro: principais substâncias metálicas 2020. Brasil: ANM. Disponível em: https://www.gov.br/anm/pt-br/centrais-de-conteudo/publicacoes/serie-estatisticase-economia-mineral/anuario-mineral/anuario-mineralbrasileiro/amb_2020_ano_base_2019_revisada2_28_09.pdf. Acesso em: 12 maio 2021.

Angeli, G. (2011). Mapeamento litoestrutural da mina de Brucutu, escala 1:10.000. Relatório interno. São Gonçalo do Rio Abaixo: Vale S.A., v. 1.

Berardino, P., Costantini, M., Franceschetti, G., Iodice, A., Pietranera, L., Rizzo, V. (2003). Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Engineering Geology, 68(1-2), 31-51. https://doi.org/10.1016/S0013-7952(02)00197-7

Bieniawski, Z. T. (1989). Engineering rock mass classification. Nova York: John Wiley.

Bieniawski, Z. T. (2011). Misconceptions in the Applications of Rock Mass Classifications and their Corrections. In: Seminar on Advanced Geotechnical Characterization for Tunnel Design. Madri: ADIF.

Burgmann, R., Rosen, P. A., Fielding, E. J. (2000). Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annual Review of Earth and Planetary Sciences, 28, 169-209. https://doi.org/10.1146/annurev.earth.28.1.169

Dehls, J. (2006). Permanent Scatterer InSAR Processing: Forsmark. SKB Rapport R-06-56. Estocolmo: Swedish Nuclear Fuel and Waste Management Co. Disponível em: https://www.skb.com/publication/1126068/R-06-56.pdf. Acesso em: 13 jun. 2023.

Dorr, J. V. N. II. (1958). The Gandarela Formation. Boletim da Sociedade Brasileira de Geologia, 7(2), 63-64.

Dorr, J. V. N. (1969). Physiographic, Stratigraphic and Structural Development of the Quadrilátero Ferrífero, Minas Gerais, Brazil. USGS Professional Paper. 641-A, 110. Disponível em: https://pubs.usgs.gov/pp/0641a/report.pdf. Acesso em: 13 jun. 2023.

Dorr, J. V. N. II, Gair, J. E., Pomerene, J. B., Rynearson, G. A. (1957). Revisão da estratigrafia pré-cambriana do Quadrilátero Ferrífero, Brazil. 81. ed. Rio de Janeiro: DNPM/DFPM.

Endo, I., Galbiatti, H. F., Delgado, C. E. R., Oliveira, M. M. F., Zapparoli, A. C., Moura, L. G. B., Peres, G. G., Oliveira, A. H., Zavaglia, G., Danderfer Filho, A., Gomes, C. J. S., Carneiro, M. A., Nalini Jr., H. A., Castro, P. T. A., Suita, M. T. F., Tazava, E., Lana, C. C., Martins-Neto, M. A., Martins, M. S., Ferreira Filho, F. A., Franco, A. P., Almeida, L. G., Rossi, D. Q., Angeli, G., Madeira, T. J. A., Piassa, L. R. A., Mariano, D. F., Carlos, D. U. (2019). Mapa Geológico do Quadrilátero Ferrífero, Minas Gerais, Brasil. Escala 1:150.000: Uma celebração do cinquentenário da obra de Dorr (1969). Ouro Preto: Departamento de Geologia da Escola de Minas/UFOP – Centro de Estudos Avançados do Quadrilátero Ferrífero. Disponível em: https://qfe2050.ufop.br/mapa-geologico-doquadrilatero-ferrifero-2019. Acesso em: 10 abr. 2021.

Endo, I., Oliveira, A. H., Peres, G. G., Guimarães, M. L. V., Lagoeiro, L. E., Machado, R., Zavaglia, G., Rosas, C. F., Melo, R. J. (2005). Nappe Curral: Uma megaestrutura alóctone do Quadrilátero Ferrífero e controle da mineralização. X Simpósio Nacional de Estudos Tectônicos / IV International Symposium on Tectonics, 279-282. Curitiba: Boletim de Resumos Expandidos.

Endo, I., Silva, A. G., Mariano, D. F., Espinoza, J. A. A., Lopes, A. P., Angeli, G. (2008). Estratigrafia e arcabouço estrutural dos distritos ferríferos de Brucutu e Dois Irmãos, Quadrilátero Ferrífero, MG. Relatório Interno – Vale S.A. Convênio Vale-Universidade Federal de Ouro Preto-UFOP e Fundação Gorceix.

Endo, I., Silva, L. G., Zavaglia, G. (2004). Projeto Brucutu-Dois Irmãos Mapeamento Geológico, Estratigrafia e Arcabouço Estrutural. Relatório Interno – Convênio UFOP e Vale S.A. p. 38.

ESA – European Space Agency (2021). About COSMOSkyMed. Itália: European Space Agency. Disponível em: https://earth.esa.int/eogateway/missions/cosmo-skymed. Acesso em: 31 jun. 2021.

Ferretti, A., Prati, C., Rocca, F. (2001). Permanent Scatterers in SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20. https://doi.org/10.1109/36.898661

Hartwig, M. E. (2016). Detection of mine slope motions in Brazil as revealed by satellite radar interferograms. Bulletin of Engineering Geology and the Environment, 75(1), 605-621. https://doi.org/10.1007/s10064-015-0832-8

Hartwig, M. E., Paradella, W., Mura, J. (2013). Detection and Monitoring of Surface Motions in Active Open Pit Iron Mine in the Amazon Region, Using Persistent Scatterer Interferometry with TerraSAR-X Satellite Data. Remote Sensing, 5(9), 4719-4734. https://doi.org/10.3390/rs5094719

ISRM – International Society for Rock Mechanics (1978). Suggested methods for the quantitative description of discontinues in rock masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 15(6), 319-368.

IUGS – International Union of Geological Sciences (1995). A suggested method for describing the rate of movement of a landslide. Bulletin of the International Association of Engineering Geology, 52(1), 75-78.

Jung, H. C., Kim, S. W., Jung, H. S., Min, K. D., Won, J. S. (2007). Satellite observation of coal mining subsidence by persistent scatterer analysis. Engineering Geology, 92(1-2), 1-13. https://doi.org/10.1016/j.enggeo.2007.02.007

Lume Estratégia Ambiental LTDA (2012). Estudo de Impacto Ambiental (EIA) e Relatório de Impacto Ambiental. Projeto Cava da Divisa. Lume Estratégia Ambiental LTDA.

Macciotta, R., Hendry, M. T. (2021). Remote Sensing Applications for Landslide Monitoring and Investigation in Western Canada. Remote Sensing, 13(3), 366. https://doi.org/10.3390/rs13030366

Martin, D., Stacey, P. (2018). Cemented Sediments. Guidelines for Open Pit Slope Design in Weak Rocks. Melbourne: CSIRO Publishing.

Massonnet, D., Feigl, K. (1998). Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics, 36(4), 441-500. https://doi.org/10.1029/97RG03139

MME – Ministério de Minas e Energia (2020). Boletim do Setor Mineral – outubro. Brasil: MME. Disponível em: https://www.gov.br/mme/pt-br/assuntos/secretarias/geologiamineracao-e-transformacao-mineral/publicacoes-1/boletimdo-setor-mineral/boletim-do-setor-mineral-2013-outubro-2020-dados-atualizados-ate-setembro-de-2020.pdf/view. Acesso em: 5 abr. 2021.

Mura, J. C., Paradella, W. R., Gama F. F., Santos, A., Galo, M., Camargo, O. P., Silva, A. Q., Silva, G. G. (2014). Monitoring of surface deformation in open pit mine using DInSAR time-series: a case study in the N5W iron mine (Carajás, Brazil) using TerraSAR-X data. Amsterdam: International Society for Optical Engineering. Disponível em: https://www.researchgate.net/publication/280716598_Monitoring_of_surface_deformation_in_open_pit_mine_using_DInSAR_timeseries_A_case_study_in_the_N5W_iron_mine_Carajas_Brazil_using_TerraSAR-X_data. Acesso em: 7 maio 2022.

Ng, A. H., Ge, L., Yan, Y., Li, X., Chang, H., Zhang, K., Rizos, C. (2010). Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of New South Wales, Australia. Engineering Geology, 115(1-2), 1-15. https://doi.org/10.1016/j.enggeo.2010.07.004

Ng, A. H., Ge, L., Zhang, K., Li, X., Chang, H., Zhang, K., Rizos, C. (2012). Estimating horizontal and vertical movements due to underground mining using ALOS PALSAR. Engineering Geology, 143-144, 18-27. https://doi.org/10.1016/j.enggeo.2012.06.003

Paradella, W. R., Mura, J. C., Gama, F. F., Santos, A. R., Camargo, P. O., Galo, M., Silva, A. Q., Silva, G. G. (2015). Detecção e Monitoramento de estabilidade de taludes e deformações superficiais em mina a céu aberto através de técnicas avançadas de interferometria diferencial de radar: uma avaliação nas minas de ferro de Carajás (N4E, N4W, N5W) utilizando dados do Satélite TerraSAR-X. São José dos Campos: INPE. Disponível em: http://www.obt.inpe.br/OBT/assuntos/projetos/deteccao-e-monitoramento-terrasar-x. Acesso em: 8 maio 2022.

Perski, Z., Hanssen, R., Wojcik, A., Wojciechowski. (2009). InSAR analyses of terrain deformation near the Wieliczka Salt Mine, Poland. Engineering Geology, 106(1-2), 58-67. https://doi.org/10.1016/j.enggeo.2009.02.014

Pinto, C. A., Paradella, W. R., Mura, J. C., Gama, F. F., Santos, A. R., Silva, G. G., Hartwig, M. E. (2015). Applying persistent scatterer interferometry for surface displacement mapping in the Azul open pit manganese mine (Amazon region) with TerraSAR-X StripMap data. Journal of Applied Remote Sensing, 9(1), 095978. https://doi.org/10.1117/1.JRS.9.095978

Qi, Y., Zhang, M., Qui, L., Tan, W., Sun, J., Hugang, P., Xu, W. (2019). Application of Ground-based Deformation Monitoring Radar in Mine Slope Monitoring-Taking a mine in Inner Mongolia as an example. International Conference on Signal, Information and Data Processing (ICSIDP). Chongqing: IEEE. https://doi.org/10.1109/ICSIDP47821.2019.9173427

Raucoules, D., Maisons, C., Carnec, C., Le Movelic, S., King, C., Hosford, S. (2003). Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert Salt Mine (France): comparison with groundbased measurement. Remote Sensing of Environment, 88(4), 468-478. https://doi.org/10.1016/j.rse.2003.09.005

Renger, F. E., Noce, C. M., Romano, A. W., Machado, N. (1994). Evolução sedimentar do Supergrupo Minas: 500 Ma de registro geológico no Quadrilátero Ferrífero, Minas Gerais, Brasil. Geonomos, 2(1), 1-11. https://doi.org/10.18285/geonomos.v2i1.227

Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodrígues, E., Goldstein, R. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333-382. https://doi.org/10.1109/5.838084

Sá, G., Figueiredo, R. P., Magalhães, F. (2013). Ruptura do Talude Sudeste da Mina de N4E: Um Estudo de Caso, Carajás, Estado do Pará. Revista Brasileira de Geologia de Engenharia e Ambiental, 3, 115-129. Disponível em: https://www.abge.org.br/downloads/revistas/RevistaABGE_Ruptura_do_Talude.pdf. Acesso em: 13 jun. 2023.

Spier, C. A., Oliveira, S. M. B., Sial, A. N., Ríos, F. J. (2007). Geochemistry and genesis of the banded iron formations of the Cauê Formation, Quadrilátero Ferrífero, Minas Gerais, Brazil. Precambrian Research, 152(3-4), 170-206. https://doi.org/10.1016/j.precamres.2006.10.003

Vale S.A. (2017). Relatório Anual Formulário 20-F. Vale S.A. Disponível em: http://www.vale.com/brasil/pt/investors/information-arket/annualreports/20f/paginas/default.aspx. Acesso em: 3 abr. 2021.

Vale S.A. (2019a). Mapeamento Geológico-Geotécnico. Procedimentos Operacionais Internos – Gerência de Geotecnia e Hidrogeologia. Vale S.A.

Vale S.A. (2019b). Relatório de Recursos-Modelo BRU_0519. Gerência de Recursos Minerais Ferrosos Vale. Vale S.A.

Walm Engenharia (2021). Mina Brucutu Revisão e Atualização do Modelo Geológico-Geomecânico. Relatório técnico interno. Walm Engenharia.

Yang, C., Zhang, Q., Zhao, C., Ji, L., Zhu, W. (2010). Monitoring mine collapse by DInSAR. Mining Science and Technology, 20(5), 696-700. https://doi.org/10.1016/S1674-5264(09)60265-9

Yang, Z., Zhiwei, L., Zhu, J., Wang, Y., Wu, L. (2020). Use of SAR/InSAR in Mining Deformation Monitoring, Parameter Inversion, and Forward Predictions: A Review. Geoscience and Remote Sensing Magazine, 8(1), 71-90. https://doi.org/10.1109/MGRS.2019.2954824

Published

2023-10-05

Issue

Section

Articles

How to Cite

Boulhosa, G. S. ., Hartwig, M. E. ., & Fernandes, A. B. . (2023). A-DInSAR technique applied to the surface displacements of the GW sector of the Brucutu mine – Quadrilátero Ferrífero. Geologia USP. Série Científica, 23(3), 99-119. https://doi.org/10.11606/issn.2316-9095.v23-206428