On the development of a trait-based approach for studying Neotropical bats

Authors

  • Dennis Castillo-Figueroa Pontificia Universidad Javeriana (PUJ), Facultad de Ciencias, Departamento de Biología, Unidad de Ecología y Sistemática (UNESIS), Laboratorio de Ecología Funcional http://orcid.org/0000-0002-4584-0762
  • Jairo Pérez-Torres Pontificia Universidad Javeriana (PUJ), Facultad de Ciencias, Departamento de Biología, Unidad de Ecología y Sistemática (UNESIS), Laboratorio de Ecología Funcional http://orcid.org/0000-0001-7121-6210

DOI:

https://doi.org/10.11606/1807-0205/2021.61.24

Keywords:

Chiroptera, Ecosystem functions, Functional traits, Morphology, Life-history

Abstract

New World bats are involved in key ecological processes and are good indicators of environmental changes. Recently, trait-based approaches have been used in several taxa to better understand mechanisms underlying species assemblages, biotic interactions, environmental relationships and ecosystem functions. However, despite the relevance of bats on ecosystem dynamics, so far, there is no conceptual framework that relies on the measurement of bat traits to address functional studies. Here, we present a set of 50 bat biological traits, which are suitable to assess environmental stressors and can potentially affect ecological processes. Several examples were provided to show the applicability of this framework in the study of Neotropical bat ecology. We suggest some considerations regarding trait-based approach including the importance of intraspecific variation, correlations between traits, response-effect framework, global dataset, and future directions to assess the reliability of functional relations across species and Neotropical regions by using traits. This could be helpful in tackling ecological questions associated with community assembly and habitat filtering, species diversity patterns along environmental gradients, and ecological processes. We envision this paper as a first step toward an integrative bat functional trait protocol held up with solid evidence.

Downloads

Download data is not yet available.

References

Adams, R. & Thibault, K. 1999. Growth, development, and histology of the calcar in the little brown bat, Myotis lucifugus (Vespertilionidae). Acta chiropterrologica, 1(2): 215-221.

Adams, R.; Snode, E. & Shaw, J. 2012. Flapping Tail Membrane in Bats Produces Potentially Important Thrust during Horizontal Takeoffs and Very Slow Flight. Plos One, 7(2): 32074. http://doi.org/10.1371/journal.pone.0032074

Agosta, S.J. 2002. Habitat use, diet and roost selection by the big brown bat (Eptesicus fuscus) in North America: a case for conserving an abundant species. Mammal Review, 32(3): 179-198.

Aguilar-Rodríguez, P.A.; Tschapka, M.; García-Franco, J.G.; Krömer, T. & MacSwiney, M.C. 2019. Bromeliads going batty: pollinator partitioning among sympatric chiropterophilous Bromeliaceae. AoB PLANTS, 11(2): plz014. http://doi.org/10.1093/aobpla/plz014

Aguirre, L.F.; Herrel, A.; Van Damme, R. & Matthysen, E. 2002. Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat community. Proceedings of the Royal Society B, Biological Sciences, 269(1497): 1271-1278.

Aguirre, L.F.; Herrel, A.; Van Damme, R. & Matthysen, E. 2003. The implications of food hardness for diet in bats. Functional Ecology, 17(2): 201-212.

Altringham, J.D. 2011. Bats from evolution to conservation. Oxford, Oxford University Press.

Alviz, A. & Pérez-Torres, J. 2020. A difference between sexes: temporal variation in the diet of Carollia perspicillata (Chiroptera, Phyllostomidae) at the Macaregua cave, Santander (Colombia). Animal Biodiversity and Conservation, 43(1): 27-35.

Anderson, R.A.; McBrayer, L.D. & Herrel, A. 2008. Bite force in vertebrates: opportunities and caveats for use of a nonpareil whole-animal performance measure. Biological Journal of the Linnean Society, 93(4): 709-720.

Arevalo, R.L.M.; Amador, L.I.; Almeida, F.C. & Giannini, N.P. 2020. Evolution of body mass in bats: insights from a large supermatrix phylogeny. Journal of Mammalian Evolution, 27: 123-138.

Arita, H.T. 1990. Noseleaf morphology and ecological correlates in phyllostomid bats. Journal of Mammalogy, 71: 36-47.

Arita, H.T.; Vargas-Barón, J. & Villalobos, F. 2014. Latitudinal gradients of genus richness and endemism and the diversification of New World bats. Ecography, 37(11): 1024-1033.

Ayala-Berdon, J. & Schondube, J.E. 2011. A physiological perspective on nectar-feeding adaptation in phyllostomid bats. Physiological Biochemical Zoology, 84: 458-466.

Ayala-Berdon, J.; Galicia, R.; Flores-Ortiz, C.; Medellín, R.A. & Schondube, J.E. 2013. Digestive capacities allow the Mexican long-nosed bat (Leptonycteris nivalis) to live in cold environments. Comparative Biochemistry and Physiology – Part A: Molecular & Integrative Physiology, 164(4): 622-628.

Balcombe, E. & Fenton, B. 1988. Eavesdropping by bats, the influence of echolocation call design and foraging strategies. Ethology, 79: 158-166.

Baldwin, J.W. & Whitehead, S.R. 2015. Fruit secondary compounds mediate the retention time of seeds in the guts of Neotropical fruit bats. Oecologia, 177: 453-466.

Ballesteros-Correa, J. 2015. Efecto del manejo silvopastoril y convencional de ganadería extensiva sobre el ensamblaje de murciélagos asociados a fragmentos de bosque seco tropical en Córdoba, Colombia. (Doctoral tesis). Pontificia Universidad Javeriana, Bogotá (Colombia).

Barboza-Marquez, K.; Aguirre, L.F.; Zubieta, J.C.P. & Kalko, E.K. 2013. Habitat use by aerial insectivorous bats of external areas of Barro Colorado Nature Monument, Panamá. Chiroptera Neotropical, 19: 44-56.

Barclay, R.M.R. 1985. Long-versus short range foraging strategies of hoary (Lasiurus cinereus) and silver-haired (Lasionycteris noctivagans) bats and consequences for prey selection. Canadian Journal of Zoology, 64(12): 2507-2515.

Barclay, R.M.R. 1994. Constraints on reproduction by flying vertebrates-energy and calcium. American Naturalist, 144(6): 1021-1031.

Barclay, R.M.R. & Brigham, R.M. 1991. Prey detection, dietary niche breadth, and body size in bats: why are aerial insectivorous bats so small? American Naturalist, 137(5): 693-703.

Barclay, R.M.R. & Harder, L.D. 2003. Life histories of bats: life in the slow lane. In: Kunz, T.H. & Fenton, B. (Eds.). Bat Ecology. University of Chicago Press, Chicago. p. 209-253.

Bates, M.E.; Simmons, J.M. & Zorikov, T.V. 2011. Bats use echo harmonic structure to distinguish their targets from background clutter. Science, 333: 627-630.

Bernard, E. & Fenton, M.B. 2003. Bat mobility and roosts in a fragmented landscape in central Amazonia, Brazil. Biotropica, 35(2): 262-277.

Bianconi, G.V.; Mikich, S.B.; Teixeira S.D. & Maia, B.H.L.N.S. 2007. Attraction of fruit-eating bats with essential oils of fruits: a potential tool for forest restoration. Biotropica, 39(1): 136-140.

Blood, B. & McFarlane, D. 1988. A new method for calculing wing area of bats. Mammalia, 52(4): 600-603.

Bohlender, E.E.; Pérez-Torres, J.; Borray-Escalante, N. & Stevens, R.D. 2018. Dietary variation during reproduction in Seba’s short-tailed fruit bat. Journal of Mammalogy, 99(2): 440-449.

Bonaccorso, F. 1979. Foraging and reproductive ecology in a Panamanian bat community. Bulletin of Florida State Museum, Biological Science, 24(4): 359-408.

Boyles, J.G. & Storm, J.J. 2007. The perils of picky eating: dietary breadth is related to extinction risk in insectivorous bats. Plos One, 2: e672. http://doi.org/10.1371/journal.pone.0000672

Brokaw, A.F. & Smotherman, M. 2020. Role of ecology in shaping external nasal morphology in bats and implications for olfactory tracking. Plos One, 15(1): e0226689. http://doi.org/10.1371/journal.pone.0226689

Cadotte, M.W.; Carscadden, K. & Mirotchnick, N. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48(5): 1079-1087.

Camargo, N. & Oliveira, H. 2012. Sexual Dimorphism in Sturnira lilium (Chiroptera, Phyllostomidae): Can Pregnancy and Pup Carrying Be Responsible for Differences in Wing Shape? Plos One, 7(11): e49734. http://doi.org/10.1371/journal.pone.0049734

Castaño, J.H.; Carranza, J.A. & Pérez-Torres, J. 2018. Diet and trophic structure in assemblages of montane frugivorous phyllostomid bats. Acta Oecologica, 91: 81-90.

Castillo-Figueroa, D. 2018a. Beyond specimens: linking biological collections, functional ecology and biodiversity conservation. Revista Peruana de Biología, 25(3): 343-348.

Castillo-Figueroa, D. 2018b. Fluctuating asymmetry of three bat species in extensive livestock systems of Córdoba Department, Colombia. Revista Colombiana de Ciencia Animal, 10(2): 143-153.

Castillo-Figueroa, D. 2020a. Ecological morphology of neotropical bat wing structures. Zoological Studies, 59: 1-14. Available: http://zoolstud.sinica.edu.tw/Journals/59/59-60.html.

Castillo-Figueroa, D. 2020b. Why bats matters: a critical assessment of bat-mediated ecological processes in the Neotropics. European Journal of Ecology, 6(1): 77-101.

Castillo-Figueroa, D. & Pérez-Torres, J. 2018. Respuestas funcionales de murciélagos asociados a fragmentos de bosque seco tropical en Córdoba (Colombia): implicaciones del tipo de manejo en sistemas de ganadería extensiva. Revista Biodiversidad Neotropical, 8(3): 197-211.

Castillo-Figueroa, D.; Stukenholtz, E.; Stevens, R.D. & Pérez-Torres, J. 2018. Cases of induced alloparental care in Seba’s short-tailed fruit bat. Neotropical Biology and Conservation, 13(4): 347-349.

Chacón-Pacheco, J.J. & Ballesteros-Correa, J. 2019. Mejor condición corporal de Artibeus lituratus en sistemas silvopastoriles que en sistemas convencionales de ganadería en Córdoba, Colombia. Oecologia Australis, 23(3): 589-605.

Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G. & Zanne, A.E. 2009. Towards a worldwide wood economics spectrum. Ecology Letters, 12(4): 351-366.

Chiu, C. & Moss, C.F. 2007. The role of the external ear in vertical sound localization in the free flying bat, Eptesicus fuscus. The Journal of the Acoustical Society of America, 121(4): 2227-2235.

Chua, S.C. & Potts, M.D. 2018. The role of plant functional traits in understanding forest recovery in wet tropical secondary forests. The Science of the Total Environment, 642: 1252-1262.

Cipollini, M. & Levey, D.J. 1997. Secondary metabolites of fleshy vertebrate-dispersed fruits: adaptive hypotheses and implications for seed dispersal. American Naturalist, 150(3): 346-372.

Cisneros, L.M.; Burgio, K.R.; Dreiss, L.M.; Klingbeil, B.T.; Patterson, B.D.; Presley, S.J. & Willig, M.R. 2014. Multiple dimensions of bat biodiversity along an extensive tropical elevational gradient. Journal of Animal Ecology, 83(5): 1124-1136.

Cisneros, L.M.; Fagan, M.E. & Willig, M.R. 2015. Effects of human-modified landscapes on taxonomic, functional and phylogenetic dimensions of bat biodiversity. Diversity and Distributions, 21(5): 523-533.

Cisneros, L.M.; Fagan, M.E. & Willig, M.R. 2016. Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes. PeerJ, 4: e2551. http://doi.org/10.7717/peerj.2551

Claramunt, S.; Derryberry, E.P.; Remsen, J.V. & Brumfield, R.T. 2012. High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proceedings of the Royal Society of London Series B, 279(1733): 1567-1574.

Cooper, l. & Sears, K. 2013. How to grow a bat wing. In: Adams, R.A. & Pedersenm, S.C. (Eds.). Bat evolution, ecology, and conservation. New York, Springer-Verlag. p. 3-20.

Córdova-Tapia, F. & Zambrano, L. 2016. Fish functional groups in a tropical wetland of the Yucatán Península, México. Neotropical Ichthyology, 14(2): e150162. http://doi.org/10.1590/1982-0224-20150162

Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Díaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; ter Steege, H.; Morgan, H.D.; van der Heijden, M.G.A.; Pausas, J.G. & Poorter, H. 2003. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(4): 335-380.

Cortés-Gómez, A.M.; Ramírez-Pinilla, M.P. & Urbina-Cardona, N. 2015. Protocolo para la medición de rasgos funcionales en anfibios, In: Salgado-Negret, B. (Ed.). La Ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Bogotá, Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt (IAvH). p. 126-180.

Crichton, E.G. & Krutzsch, P.H. 2000. Reproductive biology of bats. Cambridge, Academic Press.

Cruzblanca-Castro, M.; Martínez-Gómez, M. & Ayala-Berdon, J. 2018. Food processing does not affect energy intake in the nectar-feeding bat Anoura geoffroyi. Mammalian Biology, 88: 176-179.

Davies, N.B.; Krebs, K.R. & West, S.A. 2012. An introduction to behavioural ecology. Wiley-Blackwell, West Sussex.

Davis, J.L.; Santana, S.E.; Dumont, E.R. & Grosse, I. 2010. Predicting bite force in mammals: two-dimensional versus three-dimensional lever models. Journal of Experimental Biology, 213(11): 1844-1851.

Denzinger, A. & Schnitzler, H.U. 2013. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Frontiers in Physiology, 4: 1-15.

Denzinger, A.; Kalko, E.K.V.; Tschapka, M.; Grinnell, A.D. & Schnitzler, H.U. 2016. Guild structure and niche differentiation in echolocating bats. In: Fenton, M.B.; Grinnell, A.D.; Popper, A.N. & Fay, R.R. (Eds.). Bat bioacoustics. New York, Springer. p. 141-166.

Di Blanco, Y.E.; Spørring, K.S. & Di Bitetti, M.S. 2017. Daily activity pattern of reintroduced giant anteaters (Myrmecophaga tridactyla): effects of seasonality and experience. Mammalia, 81(1): 11-21.

Díaz, S.; Symstad, A.J.; Stuart Chapin, F.; Wardle, D.A. & Huenneke, L.F. 2003. Functional diversity revealed by removal experiments. Trends in Ecology and Evolution, 18(3): 140-146.

Dietz, C. 1973. Bat Walking behavior. Journal of Mammalogy, 54(3): 790-792.

Dietz, C.; Dietz, I. & Siemers, B.M. 2006. Wing measurement variations in the five European horseshoe bat species (Chiroptera: Rhinolophidae). Journal of Mammalogy, 87(6): 1241-1251.

Duchamp, J.E. & Swihart, R.K. 2008. Shifts in bat community structure related to evolved traits and features of human-altered landscapes. Landscape Ecology, 23(7): 849-860.

Duchamp, J.E.; Sparks, D.W. & Swihart, R.K. 2010. Exploring the “nutrient hot spot” hypothesis at trees used by bats. Journal of Mammalogy, 91(1): 48-53.

Dumont, E.R. & Herrel, A. 2003. The effects of gape angle and bite point on bite force in bats. Journal of Experimental Biology, 206(3): 2117-2123.

Esbérard, C.E.L.; de Lima, I.P.; Nobre, P.H.; Althoff, S.L.; Jordão-Nogueira, T.; Dias, D.; Carvalho, F.; Fabián, M.E.; Sekiama, M.L. & Sobrinho, A.S. 2011. Evidence of vertical migration in the Ipanema bat Pygoderma bilabiatum (Chiroptera: Phyllostomidae: Stenodermatinae). Zoologia, 28(6): 717-724.

Estrada-Villegas, S.; Meyer, C. & Kalko, E. 2010. Effects of tropical forest fragmentation on aerial insectivorous bats in a land-bridge island system. Biological Conservation, 143(3): 597-608.

Farneda, F.Z.; Meyer, C.F.J. & Grelle, C.E.V. 2019. Effects of land‐use change on functional and taxonomic diversity of Neotropical bats. Biotropica, 52(1): 120-128.

Farneda, F.Z.; Rocha, R.; López-Baucells, A.; Groenenberg, M.; Silva, I.; Palmeirim, J.M.; Bobrowiec, P. & Meyer, C.F.J. 2015. Trait-related responses to habitat fragmentation in Amazonian bats. Journal of applied Ecology, 52(5): 1381-1391.

Farneda, F.Z.; Rocha, R.; López-Baucells, A.; Sampaio, E.M.; Palmeirim, J.M.; Bobrowiec, P.E.D.; Grelle, C.E.V. & Meyer, C.F.J. 2018. Functional recovery of Amazonian bat assemblages following secondary forest succession. Biological Conservation, 218: 192-199.

Fenton, M.B. 1980. Adaptiveness and ecology of echolocation in terrestrial (aerial) systems. In: Busnel, R.G. & Fish, J.F. (Eds.). Animal Sonar Systems. New York, Plenum Press. p. 427-446.

Fenton, M.B.; Acharya, L.; Audet, D.; Hickey, M.B.C.; Merriman, C.; Obrist, M.K.; Syme, D.M. & Adkins, B. 1992. Phyllostomid bats (Chiroptera: Phyllostomidae) as indicators of habitat disruption in the Neotropics. Biotropica, 24(3): 440-446.

Ferro-Muñoz, N.; Giraldo, A. & Murillo-García, O.E. 2018. Composition, trophic structure and activity patterns of the understory bats of the Bitaco forest reserve. Acta Biológica Colombiana, 23(2): 170-178.

Findley, J.S. & Wilson, D.E. 1982. Ecological significance of chiropteran morphology. In: Kunz, T.H. (Ed.). Ecology of bats. New York, Plenum Press. p. 243-260.

Findley, J.S.; Studier, E.H. & Wilson, D.E. 1972. Morphological properties of bat wings. Journal of Mammalogy, 53(3): 429-444.

Fish, F.; Blood, B. & Clark, B. 1991. Hydrodynamics of the Feet of Fish-Catching Bats: Influence of the Water Surface on Drag and Morphological Design. Journal of Experimental Zoology, 25(8): 164-173.

Fleming, T.H. 1986. Opportunism versus specialization: the evolution of feeding strategies in frugivorous bats. In: Estrada, A. & Fleming, T.H. (Eds.). Frugivores and Seed Dispersal. Dordrecht, Dr. W. Junk Publishers. p. 105-118.

Fleming, T.H. 1988. The short-tailed fruit Bat: a study in plant-animal interactions. Chicago, University of Chicago Press.

Fleming, T.H. 1991. The relationship between body size, diet, and habitat use in frugivorous bats, genus Carollia (Phyllostomidae). Journal of Mammalogy, 72(3): 493-501.

Fleming, T.H.; Geiselman, C. & Kress, W.J. 2009. The evolution of bat pollination: a phylogenetic perspective. Annals of Botany, 104: 1017-1043.

Fleming, T.H.; Hooper, E.T. & Wilson, D.E. 1972. Three central American bat communities structure, reproductive cycles and movement patterns. Ecology, 53: 555-569.

Frank, H.K.; Frishkoff, L.O.; Mendenhall, C.D.; Daily, G.C. & Hadly, E.A. 2017. Phylogeny, traits, and biodiversity of a Neotropical bat assemblage: Close relatives show similar responses to local deforestation. American Naturalist, 190(2): 200-212.

Frick, W.F.; Kingston, T. & Flanders, J. 2019. A review of the major threats and challenges to global bat conservation. Annals of the New York Academy of Sciences, 1469(Special Issue): 5-25.

Galindo-González, J. 1998. Dispersión de semillas por murciélagos: su importancia en la conservación y regeneración del bosque tropical. Acta Zoológica Mexicana, 73: 57-74.

Garbino, G.S. & Tavares, V.D.C. 2018. Roosting ecology of Stenodermatinae bats (Phyllostomidae): Evolution of foliage roosting and correlated phenotypes. Mammal Review, 48: 75-89.

García-García, J.L.; Santos-Moreno, A. & Kraker-Castañeda, C. 2014. Ecological traits of Phyllostomid bats associated with sensitivity to tropical forest fragmentation in Los Chimalapas, México. Tropical Conservation Science, 7(3): 457-474.

García-Morales, R.; Moreno, C.E.; Badano, E.I.; Zuria, I.; Galindo-Gonzalez, J.; Rojas-Martínez, A.E. & Ávila-Gómez, E.S. 2016. Deforestation Impacts on Bat Functional Diversity in Tropical Landscapes. Plos One, 11(12): e0166765. http://doi.org/10.1371/journal.pone.0166765

Gardiner, J.D.; Codd, J.R. & Nudds, R.L. 2011a. An association between ear and tail morphologies of bats and their foraging style. Canadian Journal of Zoology, 89: 90-99.

Gardiner, J.D.; Dimitriadis, G.; Codd, J.R. & Nudds, R.L. 2011b. A potential role for bat tail membranes in flight control. Plos One, 6: e18214. http://doi.org/10.1371/journal.pone.0018214

Geiselman, C.K.; Defex, T.; Brown, T. & Younger, S. 2015. Database bat Eco – interactions. Available: http://www.batplant.org/search. Access: 01/03/2020.

Giannini, N.P. & Brenes, F.V. 2001. Flight cage observations of foraging mode in Phyllostomus discolor, P. hastatus, and Glossophaga commissarisi. Biotropica, 33(3): 546-550.

Giannini, N.P. & Kalko, E.K. 2004. Trophic structure in a large assemblage of Phyllostomid bats in Panama. Oikos, 105(2): 209-222.

Giannini, N.P.; Gunnell, G.; Habersetzer, J. & Simmons, N. 2012. Early evolution of body size in bats. In: Gunnell, G. & Simmons, N. (Eds.). Evolutionary history of bats: fossils, molecules and morphology. Cambridge, Cambridge University Press. p. 530-555.

Gómez-Ortiz, Y. & Moreno, C.E. 2017. La diversidad funcional en comunidades animales: una revisión que hace énfasis en los vertebrados. Animal Biodiversity and Conservation, 40(2): 165-174.

Gonçalves, F.; Bovendorp, R.S.; Beca, G.; Bello, C.; Costa‐Pereira, R.; Muylaert, R.L.; Rodarte, R.R.; Villar, N.; Souza, R.; Graipel, M.E.; Cherem, J.J.; Faria, D.; Baumgarten, J.; Alvarez, M.R.; Vieira, E.M.; Cáceres, N.; Pardini, R.; Leite, Y.L.R.; Costa, L.P.; Mello, M.A.R.; Fischer, E.; Passos, F.C.; Varzinczak, L.H.; Prevedello, J.A.; Cruz‐Neto, A.P.; Carvalho, F.; Percequillo, A.R.; Paviolo, A.; Nava, A.; Duarte, J.M.B.; de la Sancha, N.U.; Bernard, E.; Morato, R.G.; Ribeiro, J.R.; Becker, R.G.; Paise, G.; Tomasi, P.S.; Vélez‐Garcia, F.; Melo, G.L.; Sponchiado, J.; Cerezer, F.; Barros, M.A.S.; de Souza, A.Q.S.; dos Santos, C.C.; Giné, G.A.F.; Kerches‐Rogeri, P.; Weber, M.M.; Ambar, G.; Cabrera‐Martinez, L.V.; Eriksson, A.; Silveira, M.; Santos, C.F.; Alves, L.; Barbier, E.; Rezende, G.C.; Garbino, G.S.T.; Rios, É.O.; Silva, A.; Nascimento, A.T.A.; de Carvalho, R.S.; Feijó, A.; Arrabal, J.; Agostini, I.; Lamattina, D.; Costa, S.; Vanderhoeven, E.; de Melo, F.R.; de Oliveira Laroque, P.; Jerusalinsky, L.; Valença‐Montenegro, M.M.; Martins, A.B.; Ludwig, G.; de Azevedo, R.B.; Anzóategui, A.; da Silva, M.X.; Moraes, M.F.D.; Vogliotti, A.; Gatti, A.; Püttker, T.; Barros, C.S.; Martins, T.K.; Keuroghlian, A.; Eaton, D.P.; Neves, C.L.; Nardi, M.S.; Braga, C.; Gonçalves, P.R.; Srbek‐Araújo, A.C.; Mendes, P.; de Oliveira, J.A.; Soares, F.A.M.; Rocha, P.A.; Crawshaw-Jr., P.; Ribeiro, M.C. & Galetti, M. 2018. Atlantic Mammal Traits: a data set of morphological traits of mammals in the Atlantic Forest of South America. Ecology, 99(2): 498. http://doi.org/10.1002/ecy.2106

González-Maya, J.F.; Martínez-Meyer, E.; Medellín, R. & Ceballos, G. 2017. Distribution of mammal functional diversity in the Neotropical realm: Influence of land-use and extinction risk. Plos One, 12(4): e0175931. http://doi.org/10.1371/journal.pone.0175931

Granatosky, M.C. 2018. Forelimb and hindlimb loading patterns during quadrupedal locomotion in the large flying fox (Pteropus vampyrus) and common vampire bat (Desmodus rotundus). Journal of Zoology, 305: 63-72.

Gregorin, R. 2003. Comparative morphology of the tongue in free-tailed bats (Chiroptera, Molossidae). Iheringia, Série Zoologia, 93(2): 213-221.

Gregorin, R.; Bernard E.; Lobão, K.W.; Oliveira, L.F.; Machado, F.S.; Gil, B.B. & Tavares, V. 2017. Vertical stratification in bat assemblages of the Atlantic Forest of south-eastern Brazil. Journal of Tropical Ecology, 3(5): 299-308.

Gross, N.; Le Bagousse-Pinguet, Y.; Liancourt, P.; Berdugo, M.; Gotelli, N.J. & Maestre, F.T. 2017. Functional trait diversity maximizes ecosystem multifunctionality. Nature Ecology & Evolution, 1(5): 132. http://doi.org/10.1038/s41559-017-0132

Gunawan, G.; Saragih, G.R.; Umardani, Y.; Karnati, S.; Wihadmadyatami, H. & Kusindarta, D.L. 2019. Morphological study of the lingual papillae in the fruit bat (Rousettus amplexicaudatus) by scanning electron microscopy and light microscopy. Anatomia, Histologia, Embryologia, 49(2): 173-183.

Håkansson, J.; Jakobsen, L.; Hedenström, A. & Johansson, L.C. 2017. Body lift, drag and power are relatively higher in large-eared than in smalleared bat species. Journal of the Royal Society Interface, 14: 20170455. http://doi.org/10.1098/rsif.2017.0455

Heithaus, R. & Fleming, T. 1978. Foraging Movements of a Frugivorous Bat, Carollia perspicillata (Phyllostomatidae). Ecological Monographs, 48(2): 127-143.

Herrel, A.; De Smet, A.; Aguirre, L.F. & Aerts, P. 2008. Morphological and mechanical determinants of bite force in bats: do muscles matter? Journal of Experimental Biology, 211: 86-91.

Hodgson, J.G.; Wilson, P.J.; Hunt, R.; Grime, J.P. & Thompson K. 1999. Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos, 85: 282-294.

Holderied, M.; Korine, C. & Moritz, T. 2010. Hemprich’s longeared bat (Otonycteris hemprichii) as a predator of scorpions: whispering echolocation, passive gleaning and prey selection. Journal of Comparative Physiology A, 197: 425-433.

Hortal, J.; de Bello, F.; Diniz, J.A.F.; Lewinsohn, T.M.; Lobo, J.M. & Ladle, R.J. 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46: 523-549.

Houston, R.D.; Boonman, A.M. & Jones, G. 2004. Do echolocation signal parameters restrict bats’ choice of prey? In: Thomas, J.A.; Moss, C.F. & Vater, M. (Eds.). Echolocation in Bats and Dolphins. Chicago, Chicago University Press. p. 339-345.

Huihua, Z.; Shuyi, Z.; Mingxue, Z. & Jiang, Z. 2003 Correlations between call frequency and ear length in bats belonging to the families Rhinolophidae and Hipposideridae. Journal of Zoology, 259: 189-195.

Hurtado, N.; Sepúlveda, R. & Pacheco, V. 2015. Sexual Size Dimorphism of a Sensory Structure in a Monomorphic Bat. Acta Chiropterologica, 17(1): 75-83.

Hutson, A.M.; Mickleburgh, S.P. & Racey P.A. 2001. Microchiropteran Bats: global status survey and conservation action plan. Switzerland, IUCN/SSC.

Jacomassa, F.A.F. & Pizo, M.A. 2010. Birds and bats diverge in the qualitative and quantitative components of seed dispersal of a pioneer tree. Acta Oecologica, 36(5): 493-496.

Janzen, D.H. 1970. Herbivores and the number of tree species in tropical forests. American Naturalist, 104(940): 501-528.

Jones, G. 1999. Scaling of echolocation call parameters in bats. Journal of Experimental Biology, 202(23): 3359-3367.

Jones, G. & Holderied, M.W. 2007. Bat echolocation calls: adaptation and convergent evolution. Proceedings of the Royal Society of London B, 274(1612): 905-912.

Jones, G.; Jacobs, D.S.; Kunz, T.H.; Willig, M.R. & Racey, P.A. 2009a. Carpe noctem: the importance of bats as bioindicators. Endangered Species Research, 8: 93-115.

Jones, K.E.; Bielby, J.; Cardillo, M.; Fritz, S.A.; O’Dell, J.; Orme, C.D.L.; Safi, K.; Sechrest, W.; Boakes, E.H.; Carbone, C.; Connolly, C.; Cutts, M.J.; Foster, J.K.; Grenyer, R.; Habib, M.; Plaster, C.A.; Price, S.A.; Rigby, E.A.; Teacher, J.R.A.; Bininda-Emonds, O.R.P.; Gittleman, J.L.; Mace, G.M.M. & Purvis, A. 2009b. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90(9): 2648.

Jung, K. & Threlfall, C.G. 2018. Trait-dependent tolerance of bats to urbanization: A global meta-analysis. Proceedings of the Royal Society B, Biological Sciences, 285(1885): 1-9. http://doi.org/10.1098/rspb.2018.1222

Kalcounis, M.C. & Brigham, R.M. 1995. Intraspecific variation in wing loading affects habitat use by little brown bats (Myotis lucifugus). Canadian Journal of Zoology, 73(1): 89-95.

Kalka, M. & Kalko, E.K.V. 2006. Gleaning bats as underestimated predators of herbivorous insects: diet of Micronycteris microtis (Phyllostomidae) in Panama. Journal of Tropical Ecology, 22: 1-10.

Kalko, E.K.V. 1995. Insect pursuit, prey capture and echolocation in pipistrelle bats (Microchiroptera). Animal Behaviour, 50: 861-880.

Kalko, E.K.V.; Estrada Villegas, S.; Schmidt, M.; Wegmann, M. & Meyer, C.F. 2008. Flying high-assessing the use of the aerosphere by bats. Integrative and Comparative Biology, 48: 60-73.

Kalko, E.K.V.; Friemel, D.; Handley-Jr., C.O. & Schnitzler, H.-U. 1999. Roosting and foraging of two neotropical bats, Tonatia silvicola and Trachops cirrhosis (Phyllostomidae). Biotropica, 31(2): 344-353.

Kalko, E.K.V.; Herre, E.A. & Handley, C.O. 1996. Relation of fig fruit characteristics to fruit-eating bats in New and Old World tropics. Journal of Biogeography, 23(4): 565-576.

Karasov, W.; Martınez del Rio, C. & Caviedes-Vidal, E. 2011. Ecological physiology of diet and digestive systems. Annual Review of Physiology, 73: 69-93.

Kasso, M. & Balakrishnan, M. 2013. Ecological and Economic Importance of Bats (Order Chiroptera). ISRN Biodiversity, 2013(187415): 1-9 http://doi.org/10.1155/2013/187415

Kattge, J.; Bönisch, G.; Díaz, S.; Lavorel, S.; Prentice, I.C.; Leadley, P.; Tautenhahn, S.; Werner, G.D.A.; Aakala, T.; Abedi, M.; Acosta, A.T.R.; Adamidis, G.G.; Adamson, K.; Aiba, M.; Albert, C.H.; Alcántara, J.M.; Alcázar C., C.; Aleixo, I.; Ali, H.; Amiaud, B.; Ammer, C.; Amoroso, M.M.; Anand, M.; Anderson, C.; Anten, N.; Antos, J.; Apgaua, D.M.G.; Ashman, T.-L.; Asmara, D.H.; Asner, G.P.; Aspinwall, M.; Atkin, O.; Aubin, I.; Baastrup-Spohr, L.; Bahalkeh, K.; Bahn, M.; Baker, T.; Baker, W.J.; Bakker, J.P.; Baldocchi, D.; Baltzer, J.; Banerjee, A.; Baranger, A.; Barlow, J.; Barneche, D.R.; Baruch, Z.; Bastianelli, D.; Battles, J.; Bauerle, W.; Bauters, M.; Bazzato, E.; Beckmann, M.; Beeckman, H.; Beierkuhnlein, C.; Bekker, R.; Belfry, G.; Belluau, M.; Beloiu, M.; Benavides, R.; Benomar, L.; Berdugo-Lattke, M.L.; Berenguer, E.; Bergamin, R.; Bergmann, J.; Carlucci, M.B.; Berner, L.; Bernhardt-Römermann, M.; Bigler, C.; Bjorkman, A.D.; Blackman, C.; Blanco, C.; Blonder, B.; Blumenthal, D.; Bocanegra-González, K.T.; Boeckx, P.; Bohlman, S.; Böhning-Gaese, K.; Boisvert-Marsh, L.; Bond, W.; Bond-Lamberty, B.; Boom, A.; Boonman, C.C.F.; Bordin, K.; Boughton, E.H.; Boukili, V.; Bowman, D.M.J.S.; Bravo, S.; Brendel, M.R.; Broadley, M.R.; Brown, K.A.; Bruelheide, H.; Brumnich, F.; Bruun, H.H.; Bruy, D.; Buchanan, S.W.; Bucher, S.F.; Buchmann, N.; Buitenwerf, R.; Bunker, D.E.; Bürger, J.; Burrascano, S.; Burslem, D.F.R.P.; Butterfield, B.J.; Byun, C.; Marques, M.; Scalon, M.C.; Caccianiga, M.; Cadotte, M.; Cailleret, M.; Camac, J.; Camarero, J.J.; Campany, C.; Campetella, G.; Campos, J.A.; Cano-Arboleda, L.; Canullo, R.; Carbognani, M.; Carvalho, F.; Casanoves, F.; Castagneyrol, B.; Catford, J.A.; Cavender-Bares, J.; Cerabolini, B.E.L.; Cervellini, M.; Chacón-Madrigal, E.; Chapin, K.; Chapin, F.S.; Chelli, S.; Chen, S.-C.; Chen, A.; Cherubini, P.; Chianucci, F.; Choat, B.; Chung, K.-S.; Chytrý, M.; Ciccarelli, D.; Coll, L.; Collins, C.G.; Conti, L.; Coomes, D.; Cornelissen, J.H.C.; Cornwell, W.K.; Corona, P.; Coyea, M.; Craine, J.; Craven, D.; Cromsigt, J.P.G.M.; Csecserits, A.; Cufar, K.; Cuntz, M.; Silva, A.C. da; Dahlin, K.M.; Dainese, M.; Dalke, I.; Fratte, M.D.; Dang-Le, A.T.; Danihelka, J.; Dannoura, M.; Dawson, S.; Beer, A.J. de; De Frutos, A.; De Long, J.R.; Dechant, B.; Delagrange, S.; Delpierre, N.; Derroire, G.; Dias, A.S.; Diaz-Toribio, M.H.; Dimitrakopoulos, P.G.; Dobrowolski, M.; Doktor, D.; Dřevojan, P.; Dong, N.; Dransfield, J.; Dressler, S.; Duarte, L.; Ducouret, E.; Dullinger, S.; Durka, W.; Duursma, R.; Dymova, O.; E-Vojtkó, A.; Eckstein, R.L.; Ejtehadi, H.; Elser, J.; Emilio, T.; Engemann, K.; Erfanian, M.B.; Erfmeier, A.; Esquivel-Muelbert, A.; Esser, G.; Estiarte, M.; Domingues, T.F.; Fagan, W.F.; Fagúndez, J.; Falster, D.S.; Fan, Y.; Fang, J.; Farris, E.; Fazlioglu, F.; Feng, Y.; Fernandez-Mendez, F.; Ferrara, C.; Ferreira, J.; Fidelis, A.; Finegan, B.; Firn, J.; Flowers, T.J.; Flynn, D.F.B.; Fontana, V.; Forey, E.; Forgiarini, C.; François, L.; Frangipani, M.; Frank, D.; Frenette-Dussault, C.; Freschet, G.T.; Fry, E.L.; Fyllas, N.M.; Mazzochini, G.G.; Gachet, S.; Gallagher, R.; Ganade, G.; Ganga, F.; García-Palacios, P.; Gargaglione, V.; Garnier, E.; Garrido, J.L.; Gasper, A.L. de; Gea-Izquierdo, G.; Gibson, D.; Gillison, A.N.; Giroldo, A.; Glasenhardt, M.-C.; Gleason, S.; Gliesch, M.; Goldberg, E.; Göldel, B.; Gonzalez-Akre, E.; Gonzalez-Andujar, J.L.; González-Melo, A.; González-Robles, A.; Graae, B.J.; Granda, E.; Graves, S.; Green, W.A.; Gregor, T.; Gross, N.; Guerin, G.R.; Günther, A.; Gutiérrez, A.G.; Haddock, L.; Haines, A.; Hall, J.; Hambuckers, A.; Han, W.; Harrison, S.P.; Hattingh, W.; Hawes, J.E.; He, T.; He, P.; Heberling, J.M.; Helm, A.; Hempel, S.; Hentschel, J.; Hérault, B.; Hereş, A.M.; Herz, K.; Heuertz, M.; Hickler, T.; Hietz, P.; Higuchi, P.; Hipp, A.L.; Hirons, A.; Hock, M.; Hogan, J.A.; Holl, K.; Honnay, O.; Hornstein, D.; Hou, E.; Hough-Snee, N.; Hovstad, K.A.; Ichie, T.; Igić, B.; Illa, E.; Isaac, M.; Ishihara, M.; Ivanov, L.; Ivanova, L.; Iversen, C.M.; Izquierdo, J.; Jackson, R.B.; Jackson, B.; Jactel, H.; Jagodzinski, A.M.; Jandt, U.; Jansen, S.; Jenkins, T.; Jentsch, A.; Jespersen, J.R.P.; Guo-Feng, J.; Johansen, J.L.; Johnson, D.; Jokela, E.J.; Joly, C.A.; Jordan, G.J.; Joseph, G.S.; Junaedi, D.; Junker, R.R.; Justes, E.; Kabzems, R.; Kane, J.; Zdenek, K.; Kattenborn, T.; Kavelenova, L.; Kearsley, E.; Kempel, A.; Kenzo, T.; Kerkhoff, A.; Khalil, M.I.; Kinlock, N.L.; Kissling, W.D.; Kitajima, K.; Kitzberger, T.; Kjøller, R.; Klein, T.; Kleyer, M.; Klimešová, J.; Klipel, J.; Kloeppel, B.; Klotz, S.; Knops, J.M.H.; Kohyama, T.; Koike, F.; Kollmann, J.; Komac, B.; Komatsu, K.; König, C.; Kraft, N.J.B.; Kramer, K.; Kreft, H.; Kühn, I.; Kumarathunge, D.; Kuppler, J.; Kurokawa, H.; Kurosawa, Y.; Kuyah, S.; Laclau, J.-P.; Lafleur, B.; Lallai, E.; Lamb, E.; Lamprecht, A.; Larkin, D.J.; Laughlin, D.; Bagousse-Pinguet, Y.L.; le Maire, G.; le Roux, P.C.; le Roux, E.; Lee, T.; Lens, F.; Lewis, S.L.; Lhotsky, B.; Yuanzhi, L.; Xine, L.; Lichstein, J.W.; Liebergesell, M.; Lim, J.Y.; Lin, Y.-S.; Linares, J.C.; Liu, C.; Liu, D.; Liu, U.; Livingstone, S.; Llusià, J.; Lohbeck, M.; López-García, Á.; Lopez-Gonzalez, G.; Lososová, Z.; Louault, F.; Lukács, B.A.; Lukeš, P.; Luo, Y.; Lussu, M.; Ma, S.; Pereira, C.M.R.; Mack, M.; Maire, V.; Mäkelä, A.; Mäkinen, H.; Malhado, A.C.M.; Mallik, A.; Manning, P.; Manzoni, S.; Marchetti, Z.; Marchino, L.; Marcilio-Silva, V.; Marcon, E.; Marignani, M.; Markesteijn, L.; Martin, A.; Martínez-Garza, C.; Martínez-Vilalta, J.; Mašková, T.; Mason, K.; Mason, N.; Massad, T.J.; Masse, J.; Mayrose, I.; McCarthy, J.; McCormack, M.L.; McCulloh, K.; McFadden, I.R.; McGill, B.J.; McPartland, M.Y.; Medeiros, J.S.; Medlyn, B.; Meerts, P.; Mehrabi, Z.; Meir, P.; Melo, F.P.L.; Mencuccini, M.; Meredieu, C.; Messier, J.; Mészáros, I.; Metsaranta, J.; Michaletz, S.T.; Michelaki, C.; Migalina, S.; Milla, R.; Miller, J.E.D.; Minden, V.; Ming, R.; Mokany, K.; Moles, A.T.; Molnár V, A.; Molofsky, J.; Molz, M.; Montgomery, R.A.; Monty, A.; Moravcová, L.; Moreno-Martínez, A.; Moretti, M.; Mori, A.S.; Mori, S.; Morris, D.; Morrison, J.; Mucina, L.; Mueller, S.; Muir, C.D.; Müller, S.C.; Munoz, F.; Myers-Smith, I.H.; Myster, R.W.; Nagano, M.; Naidu, S.; Narayanan, A.; Natesan, B.; Negoita, L.; Nelson, A.S.; Neuschulz, E.L.; Ni, J.; Niedrist, G.; Nieto, J.; Niinemets, Ü.; Nolan, R.; Nottebrock, H.; Nouvellon, Y.; Novakovskiy, A.; Nystuen, K.O.; O’Grady, A.; O’Hara, K.; O’Reilly-Nugent, A.; Oakley, S.; Oberhuber, W.; Ohtsuka, T.; Oliveira, R.; Öllerer, K.; Olson, M.E.; Onipchenko, V.; Onoda, Y.; Onstein, R.E.; Ordonez, J.C.; Osada, N.; Ostonen, I.; Ottaviani, G.; Otto, S.; Overbeck, G.E.; Ozinga, W.A.; Pahl, A.T.; Paine, C.E.T.; Pakeman, R.J.; Papageorgiou, A.C.; Parfionova, E.; Pärtel, M.; Patacca, M.; Paula, S.; Paule, J.; Pauli, H.; Pausas, J.G.; Peco, B.; Penuelas, J.; Perea, A.; Peri, P.L.; Petisco-Souza, A.C.; Petraglia, A.; Petritan, A.M.; Phillips, O.L.; Pierce, S.; Pillar, V.D.; Pisek, J.; Pomogaybin, A.; Poorter, H.; Portsmuth, A.; Poschlod, P.; Potvin, C.; Pounds, D.; Powell, A.S.; Power, S.A.; Prinzing, A.; Puglielli, G.; Pyšek, P.; Raevel, V.; Rammig, A.; Ransijn, J.; Ray, C.A.; Reich, P.B.; Reichstein, M.; Reid, D.E.B.; Réjou-Méchain, M.; Dios, V.R. de; Ribeiro, S.; Richardson, S.; Riibak, K.; Rillig, M.C.; Riviera, F.; Robert, E.M.R.; Roberts, S.; Robroek, B.; Roddy, A.; Rodrigues, A.V.; Rogers, A.; Rollinson, E.; Rolo, V.; Römermann, C.; Ronzhina, D.; Roscher, C.; Rosell, J.A.; Rosenfield, M.F.; Rossi, C.; Roy, D.B.; Royer-Tardif, S.; Rüger, N.; Ruiz-Peinado, R.; Rumpf, S.B.; Rusch, G.M.; Ryo, M.; Sack, L.; Saldaña, A.; Salgado-Negret, B.; Salguero-Gomez, R.; Santa-Regina, I.; Santacruz-García, A.C.; Santos, J.; Sardans, J.; Schamp, B.; Scherer-Lorenzen, M.; Schleuning, M.; Schmid, B.; Schmidt, M.; Schmitt, S.; Schneider, J.V.; Schowanek, S.D.; Schrader, J.; Schrodt, F.; Schuldt, B.; Schurr, F.; Garvizu, G.S.; Riviera Semchenko, M.; Seymour, C.; Sfair, J.C.; Sharpe, J.M.; Sheppard, C.S.; Sheremetiev, S.; Shiodera, S.; Shipley, B.; Shovon, T.A.; Siebenkäs, A.; Sierra, C.; Silva, V.; Silva, M.; Tommaso, S.; Sjöman, H.; Slot, M.; Smith, N.G.; Sodhi, D.; Soltis, P.; Soltis, D.; Somers, B.; Sonnier, G.; Sørensen, M.V.; Sosinski-Jr., E.E.; Soudzilovskaia, N.A.; Souza, A.F.; Spasojevic, M.; Sperandii, M.G.; Stan, A.B.; Stegen, J.; Steinbauer, K.; Stephan, J.G.; Sterck, F.; Stojanovic, D.B.; Strydom, T.; Suarez, M.L.; Svenning, J.-C.; Svitková, I.; Svitok, M.; Svoboda, M.; Swaine, E.; Swenson, N.; Tabarelli, M.; Takagi, K.; Tappeiner, U.; Tarifa, R.; Tauugourdeau, S.; Tavsanoglu, C.; te Beest, M.; Tedersoo, L.; Thiffault, N.; Thom, D.; Thomas, E.; Thompson, K.; Thornton, P.E.; Thuiller, W.; Tichý, L.; Tissue, D.; Tjoelker, M.G.; Tng, D.Y.P.; Tobias, J.; Török, P.; Tarin, T.; Torres-Ruiz, J.M.; Tóthmérész, B.; Treurnicht, M.; Trivellone, V.; Trolliet, F.; Trotsiuk, V.; Tsakalos, J.L.; Tsiripidis, I.; Tysklind, N.; Umehara, T.; Usoltsev, V.; Vadeboncoeur, M.; Vaezi, J.; Valladares, F.; Vamosi, J.; van Bodegom, P.M.; van Breugel, M.; Cleemput, E.V.; van de Weg, M.; van der Merwe, S.; van der Plas, F.; van der Sande, M.T.; van Kleunen, M.; Van Meerbeek, K.; Vanderwel, M.; Vanselow, K.A.; Vårhammar, A.; Varone, L.; Valderrama, M.Y.V.; Vassilev, K.; Vellend, M.; Veneklaas, E.J.; Verbeeck, H.; Verheyen, K.; Vibrans, A.; Vieira, I.; Villacís, J.; Violle, C.; Vivek, P.; Wagner, K.; Waldram, M.; Waldron, A.; Walker, A.P.; Waller, M.; Walther, G.; Wang, H.; Wang, F.; Wang, W.; Watkins, H.; Watkins, J.; Weber, U.; Weedon, J.T.; Wei, L.; Weigelt, P.; Weiher, E.; Wells, A.W.; Wellstein, C.; Wenk, E.; Westoby, M.; Westwood, A.; White, P.J.; Whitten, M.; Williams, M.; Winkler, D.E.; Winter, K.; Womack, C.; Wright, I.J.; Wright, S.J.; Wright, J.; Pinho, B.X.; Ximenes, F.; Yamada, T.; Yamaji, K.; Yanai, R.; Yankov, N.; Yguel, B.; Zanini, K.J.; Zanne, A.E.; Zelený, D.; Zhao, Y.-P.; Zheng, J.; Zheng, J.; Ziemińska, K.; Zirbel, C.R.; Zizka, G.; Zo-Bi, I.C.; Zotz, G. & Wirth, C. 2020. TRY plant trait database – enhanced coverage and open access. Global Change Biology, 26: 119-188.

Keddy, P.A. 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science, 3: 157-164.

Kerth, G. 2008. Causes and consequences of sociality in bats. Bioscience, 58(8): 737-746.

King, J.; Carmona-Galindo, V.; Schomer, C. & Sheridan, K. 2013. Correlaciones Exploratorias Entre Parámetros de Ecolocalización y Morfometría de la Hoja Nasal y Alas en Murciélagos de la Familia Phyllostomidae. Mesoamericana, 17(2): 31-37.

Kleiber, M. 1947. Body size and the metabolic rate. Physiological Reviews, 27(4): 511-541.

Kleyer, M.; Bekker, R.M.; Knevel, I.V.; Bakker, J.P; Thompson, K.; Sonneschein, M.; Poschold, P.; Groenendael, J.M.; Klimes, L.; Klimesova, J.; Klotz, S.; Rusch, G.M.; Hermy, M.; Adriens, D.; Boedeltje, G.; Bossuyt, B.; Dannemann, D.; Ozinga, W.A.; Romermman, C.; Stadler, M.; Schlegelmilch, J.; Steendman, H.J.; Tackenberg, O.; Wilmann, B.; Cornelissen, J.H.C.; Eriksson O.; Garnier, E. & Peco, B. 2008. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. Journal of Ecology, 96: 1266-1274.

Klug, B. & Barclay, M.R. 2013. Thermoregulation during reproduction in the solitary, foliage-roosting hoary bat (Lasiurus cinereus). Journal of Mammalogy, 94(2): 477-487.

Kunz, T.H. 1982. Roosting ecology. In: Kunz, T.H. (Ed.). Ecology of Bats. New York, Plenum Press. p. 1-46.

Kunz, T.H.; Adams, R.A. & Hood, W.R. 2009. Methods for assessing size at birth and postnatal growth and development in bats. In: Kunz, T.H. & Parsons, S. (Eds.). Ecological and behavioral methods for the study of bats. Michigan, Johns Hopkins University Press, p. 274-314.

Kunz, T.H.; Torrez, E.B.; Bauer, D.; Lobova, T. & Fleming, T.H. 2011. Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223: 1-38.

Kunz, T.H.; Whitaker, J.O. & Wadanoli, M.D. 1995. Dietary energetics of the insectivorous Mexican free-tailed bat (Tadarida brasiliensis) during pregnancy and lactation. Oecologia, 101(4): 407-415.

Lacher, T.E.; Davidson, A.D.; Fleming, T.H.; Gómez-Ruiz, E.P.; McCracken, G.F.; Owen-Smith, N.; Peres, C.A. & Vander Wall, S.B. 2019. The functional roles of mammals in ecosystems. Journal of Mammalogy, 100(3): 942-964.

Laska, M. 1990. Food transit times and carbohydrate use in three Phyllostomids bat species. Zeitschrift für Säugetierkunde, 55: 49-54.

Laurindo, R.S.; Vizentin-Bugoni, J.; Tavares, D.C.; Mancini, M.C.S.; Mello, R.M. & Gregorin, R. 2020. Drivers of bat roles in Neotropical seed dispersal networks: abundance is more important than functional traits. Oecologia, 193: 189-198.

Lavorel, S. & Garnier, E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16(5): 545-556.

Lavorel, S.; McIntyre, S.; Landsberg, J. & Forbes, T. 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology and Evolution, 12(12): 474-478.

Lisón, F. 2012. Datos biométricos de cinco especies de murciélagos (Mammalia: Chiroptera) de la Región de Murcia (SE España). Anales de Biología, 34: 37-42.

Loayza, A. & Loiselle, B.A. 2008. Preliminary Information on the Home Range and Movement Patterns of Sturnira lilium (Phyllostomidae) in a Naturally Fragmented Landscape in Bolivia. Biotropica, 40(5): 630-635.

Loayza, A.P.; Rios, R.S. & Larrea Alcázar, D.M. 2006. Disponibilidad de recurso y dieta de murciélagos frugívoros en la Estación Biológica Tunquini, Bolivia. Ecología en Bolivia, 41(1): 7-23.

López, J. & Vaughan, C. 2004. Observations on the Role of Frugivorous Bats as Seed Dispersers in Costa Rican Secondary Humid Forests. Acta Chiropterologica, 6(1): 111-119.

López-Cuamatzi, I.L.; Vega-Gutierrez, V.H.; Cabrera-Campos, I.; Ruíz-Sanchez, E.; Ayala-Berdon, J. & Saldaña-Vázquez, R.A. 2020. Does body mass restrict call peak frequency in echolocating bats? Mammal Review, 50(3): 304-313.

López-Ordoñez, J.P.; Stiles, G. & Parra-Vergara, J.L. 2015. Protocolo para la medición de rasgos funcionales en aves, In: Salgado-Negret, B. (Ed.). La Ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Bogotá, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). p. 80-126.

Louzada, N. & Pessôa, L. 2013. Morphometric differentiation of Glossophaga soricina soricina (Chiroptera: Phyllostomidae) in three Brazilian biomes. Zoologia, 30(4): 419-423.

Luck, G.; Lavorel, S.; McIntyre, S. & Lumb, K. 2012. Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. Journal of Animal Ecology, 81(5): 1065-1076.

MacArthur, R. & Pianka, E. 1966. On optimal use of a patchy environment. American Naturalist, 100(916): 603-609.

MacNab, B.K. 2003. Standard energetics of phyllostomid bats: the inadequacies of phylogenetic-contrast analyses. Comparative Biochemistry and Physiology, Molecular & Integrative Physiology, 135 A(3): 357-368.

MacNab, B.K. 2007. The evolution of energetics in birds and mammals. In: Kelt, D.A.; Lessa, E.P.; Salazar-Bravo, J. & Patton, J.L. (Eds.). The Quintessential Naturalist: Honoring the Life and Legacy of Oliver P. Pearson. Los Angeles, University of California Publications. p. 67-110.

Magalhães de Oliveira, H.F.; Camargo, N.F.; Hemprich-Bennett, D.R.; Rodríguez-Herrera, B.; Rossiter, S.J. & Clare, E.L. 2020 Wing morphology predicts individual niche specialization in Pteronotus mesoamericanus (Mammalia: Chiroptera). Plos One, 15(5): e0232601. http://doi.org/10.1371/journal.pone.0232601

Makanya, A. & Mortola, J. 2007. The structural design of the bat wing web and its possible role in gas exchange. Journal of Anatomy, 211(6): 687-697.

Mammal Diversity Database. 2020. American Society of Mammalogists. Available: http://www.mammaldiversity.org. Access: 10/07/2020.

Mancini, M.C.S.; Laurindo, R.S.; Hintze, F. Mello, R.M. & Gregorin, R. 2019. Different bat guilds have distinct functional responses to elevation. Acta Oecologica, 96: 35-42.

Marinello, M.M. & Bernard, E. 2014. Wing morphology of Neotropical bats: a quantitative and qualitative analysis with implications for habitat use. Canadian Journal of Zoology, 92(2): 141-147.

Martínez-Ferreira, S.R.; Alvarez-Añorve, M.Y.; Bravo-Monzón, A.E.; Montiel-González, C.; Flores-Puerto, J.I.; Morales-Díaz, S.P.; Chiappa-Carrara, X.; Oyama, K. & Avila-Cabadilla, L.D. 2020. Taxonomic and Functional Diversity and Composition of Bats in a Regenerating Neotropical Dry Forest. Diversity, 12: 332. http://doi.org/10.3390/d12090332

Mayfield, M.M.; Bonser, S.P.; Morgan, J.W.; Aubin, I.; McNamara, S. & Vesk, P.A. 2010. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Global Ecology and Biogeography, 19(4): 423-431.

McCain, C. 2007. Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and Biogeography, 16: 1-13.

McCracken, G.F.; Westbrook, J.K.; Brown, V.A.; Eldridge, M.; Federico, P. & Kunz, T.H. 2012. Bats Track and Exploit Changes in Insect Pest Populations. Plos One, 7(8): e43839. http://doi.org/10.1371/journal.pone.0043839

McGill, B.J.; Enquist, B.J.; Weiher, E. & Westoby, M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21(4): 178-185.

McGuire, L.P. & Boyle, W.A. 2013. Altitudinal migration in bats: evidence, patterns, and drivers. Biological Reviews, 88(4): 767-786.

Medellín, R.A.; Equihua, M. & Amin, M.A. 2000. Bat diversity and abundance as indicators of disturbance in Neotropical rainforests. Conservation Biology, 14(6): 1666-1675.

Mello, M.A.R. & Fernandez F.A.S. 2000. Reproductive ecology of the bat Carollia perspicillata (Chiroptera: Phyllostomidae) in a fragment of the Brazilian Atlantic coastal forest. Zeitschrift für Säugetierkunde, 65(6): 340-349.

Mello, M.A.R.; Kalko, E.K.V. & Silva, W.R. 2008. Movements of the bat Sturnira lilium and its role as a seed disperser of Solanaceae in the Brazilian Atlantic forest. Journal of Tropical Ecology, 24(2): 225-228.

Mello, M.A.R.; Schittini, G.M.; Selig, P. & Bergallo, H.G. 2004. A test of the effects of climate and fruiting of Piper species (Piperaceae) on reproductive patterns of the bat Carollia perspicillata (Phyllostomidae). Acta Chiropterologica, 6(2): 309-318.

Meyer, C.F.J.; Fründ, J.; Lizano, W.P. & Kalko, E.K.V. 2008. Ecological correlates of vulnerability to fragmentation in Neotropical bats. Journal of Applied Ecology, 45(1): 381-391.

Meyer, C.F.J.; Struebig, M.J. & Willig, M.R. 2016. Responses of Tropical Bats to Habitat Fragmentation, Logging, and Deforestation. In: Voigt, C. & Kingston, T. (Eds.). Bats in the Anthropocene: Conservation of Bats in a Changing World. Cham, Springer. p. 63-103.

Mikich, S.B.; Bianconi, G.V.; Maia, B.H.L.N.S. & Teixeira, S.D. 2003. Attraction of the fruit-eating bat Carollia perspicillata to Piper gaudichaudianum essential oil. Journal of Chemical Ecology, 29(10): 207-217.

Millennium Ecosystem Assessment. 2005. Ecosystems and human well being: synthesis. Washington, Island Press.

Mlambo, M.C. 2014. Not all traits are ‘functional’: insights from taxonomy and biodiversity-ecosystem functioning research. Biodiversity and Conservation, 23(3): 781-790.

Montaño-Centellas, F.; Moya, M.I.; Aguirre, L.F.; Galeon, R.; Palabrala, O.; Hurtado, R.; Galarza, I. & Tordoya, J. 2015. Community and species-level responses of phyllostomid bats to a disturbance gradient in the tropical Andes. Acta Oecologica, 62: 10-17.

Monteiro, L. & Nogueira, M. 2010. Adaptive radiations, ecological Specialization, and the evolutionary Integration of complex morphological structures. Evolution, 64(3): 724-744.

Montiel, S.; Estrada, A. & Leon, P. 2011. Reproductive seasonality of fruit-eating bats in northwestern Yucatán, México. Acta Chiropterologica, 13: 139‑145.

Mora-Fernández, C.; Peñuela-Recio, L.; Angarita-Sierra, T.; Cabrera-Amaya, D.; Suárez-Castro, F.; López-Ordoñez, J.; Salazar-Bermúdez, V.; González, J.; Bonilla-Urbano, A.; Maldonado-Ocampo, J. & Castro-Lima, F. 2013. Propuesta de indicadores para la evaluación de la salud ecosistémica de las sabanas inundables de la Orinoquia y resultados de la salud de las sabanas asociadas a la Cuenca del Ríos Pauto. In: Mora-Fernandez, C. & Peñuela-Recio, L. (Eds.). Salud Ecosistémica de las sabanas inundables asociadas a la Cuenca del rio Pauto, Casanare, Colombia. Bogotá, Yoluka. p. 76-150.

Moretti, M.; Dias, A.T.C.; de Bello, F.; Altermatt, F.; Chown, S.L.; Azcárate, F.M.; Bell, J.R.; Fournier, B.; Hedde, M.; Hortal, J.; Ibañez, S.; Öckinger, E.; Sousa, J.P.; Ellers, J. & Berg, M.P. 2017. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 31(3): 558-567.

Muchhala, N. 2006. The pollination biology of Burmeistera (Campanulaceae): specialization and syndromes. American Journal of Botany, 93: 1081-1089.

Muchhala, N. & Thomson, J.D. 2010. Fur versus feathers: pollen delivery by bats and hummingbirds and consequences for pollen production. American Naturalist, 175(6): 717-726.

Muise, K.A.; Menzies, A.K. & Willis, C.K.R. 2018. Stress-induced changes in body temperature of silver-haired bats (Lasionycteris noctivagans). Physiology & Behavior, 194: 356-361.

Müller, R. 2004. A numerical study of the role of the tragus in the big brown bat. The Journal of the Acoustical Society of America, 116(6): 3701-3712.

Muñoz, J. 2001. Murciélagos de Colombia: sistemática, distribución, descripción, historia natural y ecología. Antioquia, Editorial Universidad de Antioquia.

Murray, K.G.; Russell, S.; Picone, C.M.; Winnett-Murray, K.; Sherwood, W. & Kuhlmann, M.L. 1994. Fruit laxatives and seed passage rates in frugivores: consequences for plant reproductive success. Ecology, 75(4): 989-994.

Muscarella, R. & Fleming, T.H. 2007. The role of frugivorous bats in tropical forest succession. Biological Reviews, 82(4): 573-590.

Myers, P.; Espinosa, R.; Parr, C.S.; Jones, T.; Hammond, G.S. & Dewey, T.A. 2016. The Animal Diversity Web (online). Available: http://animaldiversity.org. Access: 24/07/2020.

Naranjo, M.E.; Renjifo, C. & Soriano, P.J. 2003. Effect of Ingestion by Bats and Birds on Seed Germination of Stenocereus griseus and Subpilocereus repandus (Cactaceae). Journal of Tropical Ecology, 19(1): 19-25.

Neuweiler, G. 2000. Echolocation. In: Neuweiler, G. (Ed.). The Biology of bats. Oxford, Oxford University Press. p. 140-260.

Nogueira, M.R.; Peracchi, A.L. & Monteiro, L.R. 2009. Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Functional Ecology, 23(4): 715-723.

Norberg, U.M. 1990. Vertebrate flight. Mechanics, physiology, morphology, ecology and evolution. Berlin, Springer-Verlag.

Norberg, U.M. 1994. Wing design, flight performance, and habitat use in bats. In: Wainwright, I.C. & Reilly, S.M. (Eds.). Ecological morphology: integrative organismal biology. Chicago, University of Chicago Press. p. 205-239.

Norberg, U.M. & Fenton, M.B. 1988. Carnivorous bats? Biological Journal of Linnean Society, 33(4): 383-394.

Norberg, U.M. & Norberg, R.Å. 2012. Scaling of wingbeat frequency with body mass in bats and limits to maximum bat size. Journal of Experimental Biology, 215(5): 711-722.

Norberg, U.M. & Rayner, J.M. 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society B: Biological Sciences, 316: 335-427.

Núñez, S.F.; López-Baucells, A.; Rocha, R.; Farneda, F.Z.; Bobrowiec, P.E.D.; Palmeirim, J.M. & Meyer, C.F.J. 2019. Echolocation and Stratum Preference: Key Trait Correlates of Vulnerability of Insectivorous Bats to Tropical Forest Fragmentation. Frontiers Ecology and Evolution, 7: 373. http://doi.org/10.3389/fevo.2019.00373

O’Mara, M.T.; Rikker, S.; Wikelski, M.; Ter Maat, A.; Pollock, H.S. & Dechmann, D.K.N. 2017. Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats. Royal Society Open Science, 4: 171359. http://doi.org/10.1098/rsos.171359

Obrist, M.; Fenton, B.; Egerj, J. & Schlegel, P. 1993. What ears do for bats: a comparative study of pinna sound pressure transformation in chiroptera. Journal of Experimental Biology, 180: 119-152.

Olaya-Rodríguez, H.; Pérez-Torrez, J. & Londoño, M.C. 2019 Use of forest strata by bats according to wing morphology and habitat complexity in a fragment of tropical dry forest (Colombia). Journal of Bat Research and Conservation, 12(1): 83-91.

Oliveira, A.K.M. & Lemes, F.T.F. 2010. Artibeus planirostris como dispersor e indutor de germinação em uma área do Pantanal do Negro, Mato Grosso do Sul, Brasil. Revista Brasileira de Biociências, 8(1): 49-52.

Ortega-García, S.; Ferreyra-García, D. & Schoundube, J.E. 2020. Gut reaction! Neotropical nectar‑feeding bats responses to direct and indirect costs of extreme environmental temperatures. Journal of Comparative Physiology B, 190: 655-667. http://doi.org/10.1007/s00360-020-01288-z

Pastor, J.F.; Moro, J.A.; Verona, J.A.G.; Gato, A.; Represa, J.J. & Barbosa, E. 1993. Morphological study by scanning electron microscopy of the lingual papillae in the common European bat (Pipisterllus pipisterllus). Archive’s of Oral Biology, 38(7): 597-599.

Patterson, B.; Willig, M. & Stevens, R. 2003. Trophic strategies, niche partioning, and patterns of ecology organization. In: Kunz, T.H. & Fenton, B. (Eds.). Bat Ecology. Chicago, University of Chicago Press. p. 536-579.

Pereira, A.D.; de Lima, I.P. & dos Reis, N.R. 2019. Changes in Bat Diversity in Agrosystems in the Atlantic Rain Forest, Brazil. Mastozoología Neotropical, 26(1): 155-166.

Pereira, A.S.; da Rocha, P.A.; Santana, J.P.; Beltrão, R.; Iruiz-Esparza, J. & Ferrari, F. 2017. Consumption of leaves by Carollia perspicillata (Chiroptera, Phyllostomidae): a new dimension of the species’ feeding ecology. Mammalia, 82: 1-5.

Pereira, M.; Fonseca, C. & Aguiar, L.M.S. 2018. Loss of multiple dimensions of bat diversity under land-use intensification in the Brazilian Cerrado. Hystrix, 29(1): 25-32.

Pereira, M.; Marques, J.T. & Palmeirim, J.M. 2010. Vertical stratification of bat assemblages in flooded and unflooded Amazonian forests. Current Zoology, 56(4): 469-478.

Pérez-Torres, J. 2004. Dinámica del ensamblaje de murciélagos en respuesta a la fragmentación en bosques nublados: un modelo de ecuaciones. (Doctoral Thesis). Pontificia Universidad Javeriana, Bogotá (Colombia).

Pierson, E.D. 1998. Tall trees, deep holes, and scarred landscapes: conservation biology of North American bats. In: Kunz, T.H. & Racey, P.A. (Eds.). Bat biology and conservation. Washington, Smithsonian Institution Press. p. 309-324.

Presley, S.J.; Cisneros, L.M.; Higgins, C.L.; Klingbeil, B.T.; Scheiner, S.M. & Willig, M.R. 2017. Phylogenetic and functional underdispersion in Neotropical phyllostomid bat. Biotropica, 50(1): 135-145.

Presley, S.J.; Willig, M.R.; Castro-Arellano, I. & Weaver, S. 2009. Effects of habitat conversion on temporal activity patterns of phyllostomid bats in lowland Amazonian rain forest. Journal of Mammalogy, 90(1): 210-221.

Quesada, M.; Stoner, K.E.; Rosas-Guerrero, V.; Palacios-Guevara, C. & Lobo, J.A. 2003. Effects of habitat disruption on the activity of nectarivorous bats (Chiroptera: Phyllostomidae) in a dry tropical forest: implications for the reproductive success of the neotropical tree Ceiba grandiflora. Oecologia, 135(3): 400-406.

Quinn, T. & Baumel, J. 1993. Chiropteran tendon locking mechanism. Journal of Morphology, 216(2): 197-208.

Ramírez-Mejía, A.F.; Urbina-Cardona, J.N. & Sánchez, F. 2020. Functional diversity of phyllostomid bats in an urban-rural landscape: A scale-dependent analysis. Biotropica, 52(6): 1-15. http://doi.org/10.1111/btp.12816

Razak, K.A. 2018. Adaptations for substrate gleaning in bats: the pallid bat as a case study. Brain Behavior and Evolution, 91(2): 97-108.

Reeder, W.G. & Cowles, R.B. 1951. Aspects of Thermoregulation in Bats. Journal of Mammalogy, 32(4): 389-403.

Rex, K.; Michener, R.; Kunz, T.H. & Voigt, C.C. 2011. Vertical stratification of Neotropical leaf-nosed bats (Phyllostomidae: Chiroptera) revealed by stable carbon isotopes. Journal of Tropical Ecology, 27: 211-222.

Robbirt, K.M.; Davy, A.J.; Hutchings, M.J. & Roberts, D.L. 2011. Validation of biological collections as a source of phenological data for use in climate change studies: A case study with the orchid Ophrys sphegodes. Journal of Ecology, 99: 235-241.

Rocha, R.; López-Baucells, A.; Farneda, F.Z.; Groenenberg, M.; Bobrowiec, P.E.D.; Cabeza, M.; Palmeirim, J.M. & Meyer, C.F.J. 2017. Consequences of a large-scale fragmentation experiment for Neotropical bats: disentangling the relative importance of local and landscapescale effects. Landscape Ecology, 32: 31-45.

Rodrigues Coelho, E.; Paglia, A.P.; Viana-Junior, A.B.; Falcão, L.A.D. & Ferreira, G.B. 2018. Species Richness, Abundance and Functional Diversity of a Bat Community along an Elevational Gradient in the Espinhaço Mountain Range, Southeastern Brazil. Acta Chiropterologica, 20(1): 129-138.

Rodríguez-Durán, A. & Padilla-Rodríguez, E. 2008. Blood Characteristics, Heart Mass, and Wing Morphology of Antillean Bats. Caribbean Journal of Science, 44(3): 375-379.

Rubach, M.N.; Ashauer, R.; Buchwalter, D.B.; De Lange, H.J.; Hamer, M.; Preuss, T.G.; Topke, K. & Maund, S.J. 2011. Framework for traits-based assessment in ecotoxicology. Integrated Environmental Assessment and Management, 7: 172-186.

Safi, K.; Meiri, S. & Jones, K.E. 2013. Body mass evolution in bats. In: Smith, F.A. & Lyons, S.K. (Eds.). Animal body size: Linking pattern and process across space, time, and taxonomic group. Chicago, Chicago University Press. p. 95-151.

Saldaña-Vázquez, R.A. 2014a. Intrinsic and extrinsic factors affecting dietary specialization in Neotropical frugivorous bats. Mammal Review, 44: 215-224.

Saldaña-Vázquez, R.A. 2014b. Convergencia y señal filogenética: el caso de los sonidos de ecolocación en murciélagos. Boletín Red Latinoamericana de Conservación de Murciélagos, 5(3): 3-8.

Saldaña-Vázquez, R.A. & Munguía-Rosas, M.A. 2013. Lunar phobia in bats and its ecological correlates: A meta-analysis. Mammalian Biology, 78(3): 216-219.

Saldaña-Vázquez, R.A. & Schondube, J.E. 2013. Food intake changes in relation to food quality in the Neotropical frugivorous bat Sturnira ludovici. Acta Chiropterologica, 15: 69-75.

Saldaña-Vázquez, R.A. & Schondube, J.E. 2016. La masa corporal explica la dominancia de Artibeus (Phyllostomidae) en ambientes urbanos. In: Ramírez-Bautista, A. & Pineda-López, R. (Eds.). Memorias en Extenso del I Congreso de Fauna Nativa en Medios Antropizados. México, CONCYT-UAQ. p. 23-33.

Saldaña-Vázquez, R.A.; Castaño, J.H.; Baldwin, J. & Pérez-Torres, J. 2019. Does seed ingestion by bats enhance germination? A new meta-analysis 15 years later. Mammal Review, 49(3): 201-209.

Saldaña-Vázquez, R.A.; Ortega, J.; Guerrero, J.A.; Aiza-Reynoso, M.I.; MacSwiney, M.C.; Aguilar-Rodríguez, P.A.; Ayala-Berdon, J. & Zamora-Gutierrez, V. 2020. Ambient temperature drives sex ratio and presence of pregnant females of Anoura geoffroyi (Phyllostomidae) bats living in temperate forests. Journal of Mammalogy, 101(1): 234-240.

Saldaña-Vázquez, R.A.; Ruiz-Sanchez, E.; Herrera-Alsina, L. & Schondube, J. 2015. Digestive capacity predicts diet diversity in Neotropical frugivorous bats. Journal of Animal Ecology, 84: 1-9.

Salgado-Negret, B.; Pulido-Rodríguez, E.N.; Cabrera, M.; Ruiz-Osorio, C. & Paz, H. 2015. Protocolo para la medición de rasgos funcionales en plantas, In: Salgado-Negret, B. (Ed.). La Ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones, Bogotá, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). p. 37-79.

Sampedro, A.C.; Martínez, C.M.; Mercado, A.M.; Osorio, S.C.; Oteroy, Y.L. & Santos, L.M. 2008. Refugios, período reproductivo y composición social de las poblaciones de Desmodus rotundus (Geoffroy, 1810) (Chiroptera: Phyllostomidae), en Zonas Rurales del Departamento de Sucre, Colombia. Caldasia, 30: 127-134.

Santana, D. 2015. Quantifying the effect of gape and morphology on bite force: biomechanical modelling and in vivo measurements in bats. Functional ecology, 30(4): 557-565.

Santana, S.; Grosse, I. & Dummont, E. 2012. Dietary hardness, loading behavior, and the evolution of skull form in bats. Evolution, 66(8): 2587-2598.

Santana, S.E.; Strait, S. & Dumont, E.R. 2011a. The better to eat you with: functional correlates of tooth structure in bats. Functional Ecology, 25(4): 839-847.

Santana, S.E.; Dial, T.O.; Eiting, T.P. & Alfaro, M.E. 2011b. Roosting ecology and the evolution of pelage markings in bats. Plos One, 6: e25845. http://doi.org/10.1371/journal.pone.0025845

Saunders, M. & Barclay, R. 1992. Ecomorphology of insectivorous bats: a test of predictions using two morphologically similar species. Ecology, 73(4): 1335-1345.

Sazima, M.; Buzato, S. & Sazima, I. 2003. Dyssochroma viridiflorum (Solanaceae): A reproductively bat-dependent epiphyte from the Atlantic rainforest in Brazil. Annals of Botany, 92: 725-730.

Schnitzler, H-U. & Kalko, E. 2001. Echolocation by insect-eating bats. Bioscience, 51(7): 557-569.

Schnitzler, H-U.; Moss, C.; Denzinger, A. 2003. From spatial orientation to food acquisition in echolocating bats. Trends in Ecology and Evolution, 18: 386-394.

Schoener, T. 1971. Theory of feeding strategies. Annual Review of Ecology and Systematics, 2: 369-404.

Schondube, J.E.; Herrera, G. & Martínez del Río, C. 2001. Diet and the evolution of digestion and renal function in phyllostomid bats. Zoology – Analysysis of Complex Systems, 104(1): 59-73.

Schupp, E.W.; Jordano, P. & Gómez, J.M. 2010. Seed dispersal effectiveness revisited: a conceptual review. New Phytologist, 188: 333-353.

Sears, K.; Behringer, R.; Rasweiler, J. & Niswander, l. 2006. Development of bat flight: Morphologic and molecular evolution of bat wing digits. Proceedings of the National Academy of Sciences, 103(17): 6581-6586.

Sherwin, H.A.; Montgomery, W.I. & Lundy, M.G. 2012. The impact and implications of climate change for bats: Bats and climate change. Mammal Review, 43: 171-182.

Shilton, L.A.; Altringham, J.D.; Compton, S.G. & Whittaker, R.J. 1999. Old world fruit bats can be long-distance seed dispersers through extended retention of viable seeds in the gut. Proceedings of the Royal Society B. Biological Sciences, 266: 219-223.

Siefert, A.; Violle, C.; Chalmandrier, L.; Taudiere, A.; Lonnie, A.F.; Aarssen, W.; Baraloto, C.; Carlucci, M.B.; Cianciaruso, M.V.; Dantas, V.; de Bello, F.; Duarte, L.D.S.; Fonseca, C.R.; Freschet, G.T.; Gaucherand, S.; Gross, N.; Hikosaka, K.; Jackson, B.; Jung, V.; Kamiyama, C.; Katabuchi, M.; Kembel, S.W.; Kichenin, E.; Kraft, N.J.B.; Lagerström, A.; Le Bagousse‐Pinguet, Y.; Li, Y.; Mason, N.; Messier, J.; Nakashizuka, T.; McC. Overton, J.; Peltzer, D.A.; Pérez‐Ramos, I.M.; Pillar, V.D.; Prentice, H.C.; Richardson, S.; Sasaki, T.; Schamp, B.S.; Schöb, C.; Shipley, B.; Sundqvist, M.; Sykes, M.T.; Vandewalle, M. & Wardle, D.A. 2015. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18(12): 1406-1419.

Soriano, P. 2000. Functional structure of bat communities in tropical rainforests and andean cloud forests. Ecotropicos, 13(1): 1-20.

Soriano, P.J.; Ruiz, A. & Arends, A. 2002. Physiological responses to ambient temperature manipulation by three species of bats from Andean cloud forests. Journal of Mammalogy, 83(2): 445-457.

Speakman, J.R. 2008. The physiological costs of reproduction in small mammals. Philosophical Transactions of the Royal Society of London B. Biological Sciences, 363(1490): 375-398.

Stevens, R.; Johnson, M. & McCulloch, E. 2013. Absolute and relative secondary-sexual dimorphism in wing morphology: a multivariate test of the ‘Big Mother’ hypothesis. Acta Chiropterologica, 15(1): 163-170.

Stockwell, E.F. 2001. Morphology and fight manoeuvrability in New World leaf-nosed bats (Chiroptera: Phyllostomidae). Journal of Zoology, 254(4): 505-514.

Stoddart, D.M. 1979. External nares and olfactory perceptions. Experimentia, 35(11): 1456-1457.

Stukenholtz, E.; Stevens, R. & Pérez-Torres, J. 2018. Variation of vaginal cytology, progesterone and estradiol metabolites in Seba’s short-tailed fruit bat during the estrous cycle and gestation. Mastozoologia Neotropical, 25(1): 151-162.

Surlykke, A. & Kalko, E.K.V. 2008. Echolocating bats cry out loud to detect their prey. Plos One, 3(4): e2036. http://doi.org/10.1371/journal.pone.0002036

Swartz, S.M. & Middleton, K.M. 2008. Biomechanics of the bat limb skeleton: scaling, material properties and mechanics. Cell Tissues Organs, 187: 59-84.

Thiagavel, J.; Santana, S.E. & Ratcliffe, J.M. 2017. Body size predicts echolocation call peak frequency better than gape height in vespertilionid bats. Scientific Reports, 7: 828. http://doi.org/10.1038/s41598-017-00959-2

Thies, W. & Kalko, E.K.V. 2004. Phenology of neotropical pepper plants (Piperaceae) and their association with their main dispersers, two short-tailed fruit bats, Carollia perspicillata and C. castanea (Phyllostomidae). Oikos, 104(2): 362-376.

Thies, W.; Kalko, E.K.V. & Schnitzler, H.U. 2006. Influence of environment and resource availability on activity patterns of Carollia castanea (Phyllostomidae) in Panamá. Journal of Mammalogy, 87(2): 331-338.

Thollesson, M. & Norberg, U.M. 1991. Moments of inertia of bat wings and body. Journal of Experimental Biology, 158: 19-35.

Traveset, A. 1998. Effect of seed passage through vertebrate frugivores’ guts on germination: a review. Perspectives in Plant Ecology, Evolution and Systematics, 1: 151-190.

Tschapka, M. 2003. Pollination of the understorey palm Calyptrogyne ghiesbreghtiana by hovering and perching bats. Biological Journal of the Linnean Society, 80(2): 281-288.

Tschapka, M.; Gonzalez-Terrazas, T.P. & Knörnschild, M. 2015. Nectar uptake in bats using a pumping-tongue mechanism. Science Advance, 1(8): e1500525. http://doi.org/10.1126/sciadv.1500525

Uieda, W. & Vasconcellos-Neto, J. 1984. Dispersão de Solanum spp. (Solanaceae) por morcegos, na região de Manaus, AM, Brasil. Revista Brasileira de Zoologia, 2(7): 449-458.

Van den Brink, P.J.; Baird, D.J.; Baveco, H. & Focks, A. 2013. The use of traits-based approaches and eco(toxico)logical models to advance the ecological risk assessment framework for chemicals. Integrated Environmental Assessment and Management, 9(3): E47-E57. http://doi.org/10.1002/ieam.1443

Vandoros, J.D. & Dumont, E.R. 2004. Use of the wings in manipulative and suspensory behaviors during feeding by frugivorous bats. Journal of Experimental Zoology, 301A: 361-366.

Vela-Vargas, I.M.; Pérez-Torres, J.; Pérez-Pabón, L. & Larrín, P. 2016. Vaginal smears: a key source of information on the estrous cycle of Neotropical bats. Mastozoloogía Neotropical, 23: 139-145.

Verde, R.S.; Silva, R.C. & Calouro, A.M. 2018. Activity patterns of frugivorous phyllostomid bats in an urban fragment in southwest Amazonia, Brazil. Iheringia Série Zoologia, 108: 1-7.

Vieira, M.F. & Carvalho-Okano, R.M. 1996. Pollination biology of Mabea fistulifera (Euphorbiaceae) in Southeastern Brazil. Biotropica, 28(1): 61-68.

Villéger, S.; Miranda, J.R.; Hernández, D.F. & Mouillot, D. 2010. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications, 20(6): 1512-1522.

Violle, C.; Enquist, B.J.; McGill, B.J.; Jiang, L.; Albert, C.H.; Hulshof, C.; Jung, V. & Messier, J. 2012. The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution, 27(4): 244-252.

Violle, C.; Navas, M.L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I. & Garnier, E. 2007. Let the concept of trait be functional. Oikos, 116(5): 882-892.

Voigt, C.; Borissov, I. & Kelm, D.H. 2015. Bats Fertilize Roost Trees. Biotropica, 47(4): 403-406.

Voigt, C.C.; Schneeberger, K.; Voigt-Heucke, S.L. & Lewanzik, D. 2011. Rain increases the energy cost of bat flight. Biology Letters, 7(5): 793-795.

Voss, R.S.; Fleck, D.W.; Strauss, R.E.; Velazco, P.M. & Simmons, N.B. 2016. Roosting ecology of amazonian bats: evidence for guild structure in hyperdiverse mammalian communities. American Museum Novitates, 3870: 1-44.

Walldorf, V. & Mehlhorn, H. 2013. Bats: A Glimpse on Their Astonishing Morphology and Lifestyle. In: Klimpel, S. & Mehlhorn, H. (Eds.). Bats (Chiroptera) as Vectors of Diseases and Parasites Volume 5 of the series Parasitology Research Monographs. Berlin, Springer. p. 7-24.

Wang, Z.; Dong, D.; Ru, B.; Young, R.; Han, N.; Guo, T. & Zhang, S. 2010. Digital gene expression tag profiling of bat digits provides robust candidates contributing to wing formation. BMC Genomics, 11: 619. http://doi.org/10.1186/1471-2164-11-619

Webster, F.A. & Griffin, D.R. 1962. The role of flight membranes in insect capture by bats. Animal Behaviour, 10: 332-340.

Willig, M.; Patterson, B. & Stevens, R. 2003. Patterns of range, size, richness, and body size in chiroptera. In: Kunz, T.H. & Fenton, B. (Eds.). Bat Ecology. Chicago, Chicago University Press. p. 81-621.

Wilman, H.; Belmaker, J.; Simpson, J.; De La Rosa, C.; Rivadeneira, M.M. & Jetz, W. 2014. EltonTraits 1.0: Species‐level foraging attributes of the world’s birds and mammals. Ecology, 95(7): 2027. http://doi.org/10.1890/13-1917.1

Wilson, D.E. 1973. Bat faunas: a trophic comparison. Systematic Zoology, 22(1): 14-29.

Zamudio, J.E.; Herrera-Collazos, E.E.; Maldonado-Ocampo, J.A. & DoNascimiento, C. 2015. Protocolo para la medición de rasgos funcionales en peces dulceacuícolas, In: Salgado-Negret, B. (Ed.). La Ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Bogotá, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). p. 180-212.

Downloads

Published

2021-02-18

Issue

Section

Original Article

How to Cite

Castillo-Figueroa, D., & Pérez-Torres, J. (2021). On the development of a trait-based approach for studying Neotropical bats. Papéis Avulsos De Zoologia, 61, e20216124. https://doi.org/10.11606/1807-0205/2021.61.24