Biologia e teoria psicanalítica: das nuances de uma afinidade controversa para a adaptação epigenética
DOI:
https://doi.org/10.1590/0103-6564e230040Palavras-chave:
teoria psicanalítica, teoria da evolução, teoria neuronalResumo
No final do século XIX, Freud baseou-se na teoria neuronal para apoiar o seu modelo teórico do aparelho mental. Porém, devido às restrições da neurobiologia da época, migrou suas explorações teóricas para o campo metapsicológico. Apesar dessa mudança, os fundamentos neurobiológicos iniciais permaneceram influentes no desenvolvimento da sua teoria da mente, destacando, em particular, a interação entre fatores hereditários e ambientais na diferenciação das estruturas psíquicas. Freud acreditava que era por meio da interação dos organismos com o meio ambiente/cultura, juntamente à herança biológica, que ocorria a diferenciação das estruturas psíquicas, visão que ressoa com os princípios lamarckianos rejeitados pela biologia da época. Essa divergência entre a biologia e a teoria psicanalítica, centrada na adesão de Freud aos seus conceitos teóricos, aponta para um conflito entre as disciplinas. No entanto, os desenvolvimentos contemporâneos na biologia, como a epigenética, podem fornecer uma base para a reconciliação entre esses campos.
Downloads
Referências
Anway, M. D., Cupp, A. S., Uzumcu, M., & Skinner, M. K. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 308(5727), 1466-1469.
Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. cell, 116(2), 281-297.
Bowlby, J. (1951). Maternal care and mental health (Vol. 2). Geneva: World Health Organization Geneva.
Bowlby, J. (1973). Attachment and loss, vol. II: Separation. New York: Basic Books.
Bowler, P. J. (1983). The eclipse of Darwinism: Anti-Darwinian evolution theories in the decades around 1900. Baltimore, Maryland,: Johns Hopkins University Press.
Braithwaite, E. C., Kundakovic, M., Ramchandani, P. G., Murphy, S. E., & Champagne, F. (2015). Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics, 10(5), 408-417.
Carone, B. R.; Fauquier, L.; Habib, N.; Shea, J. M.; Hart, C. E.; Li, R., . . . Zamore, P. D. (2010). Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. cell, 143(7), 1084-1096.
Čater, M., & Majdič, G. (2022). How early maternal deprivation changes the brain and behavior?. European Journal of Neuroscience, 55(9-10), 2058-2075.
Champagne, F. A.; Chretien, P.; Stevenson, C. W.; Zhang, T. Y.; Gratton, A., & Meaney, M. J. (2004). Variations in nucleus accumbens dopamine associated with individual differences in maternal behavior in the rat. Journal of Neuroscience, 24(17), 4113-4123.
Champagne, F. A.; & Curley, J. P. (2009). Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neuroscience & Biobehavioral Reviews, 33(4), 593-600.
Chen, Q.; Yan, M.; Cao, Z.; Li, X.; Zhang, Y.; Shi, J., . . . Zhang, Y. (2016). Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science, 351(6271), 397-400.
Darwin, C. (2004). On the origin of species, 1859. London: Routledge.
Daxinger, L.; & Whitelaw, E. (2012). Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nature Reviews Genetics, 13(3), 153-162.
de Lamarck, J.-B. M. (1809). Philosophie zoologique, ou Exposition des considérations relatives à l’histoire naturelle des animaux. Paris: Dentu.
Dias, B. G.; & Ressler, K. J. (2014a). Experimental evidence needed to demonstrate inter‐and trans‐generational effects of ancestral experiences in mammals. Bioessays, 36(10), 919-923.
Dias, B. G.; & Ressler, K. J. (2014b). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17(1), 89-96.
Flanagan, J. M.; & Wild, L. (2007). An epigenetic role for noncoding RNAs and intragenic DNA methylation. London: BioMed Central.
Francis, D. D.; & Meaney, M. J. (1999). Maternal care and the development of stress responses. Current opinion in neurobiology, 9(1), 128-134.
Franklin, T. B.; Russig, H.; Weiss, I. C.; Gräff, J.; Linder, N.; Michalon, A., . . . Mansuy, I. M. (2010). Epigenetic transmission of the impact of early stress across generations. Biological psychiatry, 68(5), 408-415.
Freud, S. (1999). A interpretação dos sonhos. Rio de Janeiro, RJ: Imago.
Freud, S. (1966). Project for a scientific psychology. In J. Strachey (Ed.), The Standard Edition of the Complete Psychological Works of Sigmund Freud (Vol. 1, pp. 283-397). London: Hogarth Press.
Freud, S. (1955). Beyond the pleasure principle. The Standard Edition of the complete psychologicalworks of Sigmund Freud, 18.
Freud, S. (2006). O ego e o id e outros trabalhos. Obras Completas. Rio de Janeiro, RJ: Imago.
Freud, S. (1915). Letter from Sigmund Freud to Karl Abraham, October 15, 1915. In J. Strachey (Ed. & Trans.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 15, pp. 339-342). London: Hogarth Press. (Original work published 1915).
Freud, S. (1878). Über den Bau der Spinalcord von Petromyzon Planeri. Zeitschrift für wissenschaftliche Zoologie, 30(1), 1-16.
Freud, S. (1925). A fictional addition to an autobiographical fact [Uma adição fictícia a um fato autobiográfico]. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud, Vol. XX (pp. 10-13). London: Hogarth Press. (Original work published 1918).
Freud, S. (1976). Obras Completas: Moisés e o monoteísmo, compêndio de psicanálise e outros textos (1937-1939). Rio de Janeiro, RJ: Imago.
Gamwell, L.; & Solms, M. (2006). Sigmund Freud’s neurological drawings and diagrams of the mind. New York: Binghamton University Art Museum, State University of New York.
Gapp, K.; Jawaid, A.; Sarkies, P.; Bohacek, J.; Pelczar, P.; Prados, J., . . . Mansuy, I. M. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nature Neuroscience, 17(5), 667-669.
Gershenowitz, H. (1979). The influence of Lamarckism on the development of Freud’s psychoanalytic theory. Indian Journal of History of Science Calcutta, 14(2), 105-113.
Glucksman, M. L. (2016). Freud’s “Project”: The Mind-Brain Connection Revisited. Psychodynamic psychiatry, 44(1), 69-90.
Godmann, M., Lambrot, R., McGraw, S., Lafleur, C., . . . Hallett, M. (2015). Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science, 350(6261), aab2006.
Greer, E. L.; Maures, T. J.; Ucar, D.; Hauswirth, A. G.; Mancini, E.; Lim, J. P., . . . Brunet, A. (2011). Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature, 479(7373), 365-371.
Hofer, M. A. (2014). The emerging synthesis of development and evolution: A new biology for psychoanalysis. Neuropsychoanalysis, 16(1), 3-22.
Huxley, J. (1942). Evolution. The Modern Synthesis.
Jablonka, E.; & Lamb, M. (1999). Epigenetic inheritance and evolution: Lamarckian Dimension. Oxford: Oxford University Press.
Jablonka, E.; Lamb, M. J.; & Avitai, E. (1998). ‘Lamarckian’mechanisms in Darwinian evolution. Trends in Ecology & Evolution, 13(5), 206-210.
Jones, E. (1953). The life and work of Sigmund Freud. Vol. 1. 1856-1900. The formative years and the great discoveries.
Jones, E. (1955). The life and work of Sigmund Freud. Vol. 2. Years of maturity. 1901-1919.
Jones, E. (1957). Sigmund Freud, life and work. Vol. 3. The Last Phase. Basic Books.
Kandel, E. R. (1998). A new intellectual framework for psychiatry. American Journal of Psychiatry, 155(4), 457-469.
Kandel, E. R. (1999). Biology and the future of psychoanalysis: a new intellectual framework for psychiatry revisited. American Journal of Psychiatry, 156(4), 505-524.
Kandel, E. R. (2001). Nobel Lecture: the molecular biology of memory storage: a dialog between genes and synapses. Bioscience reports, 21, 565-611.
Kandel, E. R. (2007). In search of memory: The emergence of a new science of mind. New York: WW Norton & Company.
Kandel, E. R. (2008). Psychiatry, psychoanalysis, and the new biology of mind. Arlington,: American Psychiatric Pub.
Kosten, T. A.; & Nielsen, D. A. (2014). Litter and sex effects on maternal behavior and DNA methylation of the Nr3c1 exon 17 promoter gene in hippocampus and cerebellum. International Journal of Developmental Neuroscience, 36, 5-12.
Levenson, J. M.; & Sweatt, J. D. (2005). Epigenetic mechanisms in memory formation. Nature Reviews Neuroscience, 6(2), 108-118.
Marcaggi, G.; & Guénolé, F. (2018). Freudarwin: Evolutionary thinking as a root of psychoanalysis. Frontiers in psychology, 9, 892.
McClintock, B. (1953). Induction of instability at selected loci in maize. Genetics, 38(6), 579.
McGowan, P. O.; Suderman, M.; Sasaki, A.; Huang, T. C.; Hallett, M.; Meaney, M. J.; & Szyf, M. (2011). Broad epigenetic signature of maternal care in the brain of adult rats. PloS one, 6(2), e14739.
McGowan, P. O.; & Szyf, M. (2010). The epigenetics of social adversity in early life: implications for mental health outcomes. Neurobiology of disease, 39(1), 66-72.
Meaney, M. J. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience, 24(1), 1161-1192.
Meaney, M. J.; & Szyf, M. (2022). Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues in clinical neuroscience.
Mohammad, F.; Pandey, G. K.; Mondal, T.; Enroth, S.; Redrup, L.; Gyllensten, U.; & Kanduri, C. (2012). Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development, 139(15), 2792-2803.
Morgan, C. P.; & Bale, T. L. (2011). Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. Journal of Neuroscience, 31(33), 11748-11755.
Nestler, E. J.; Peña, C. J.; Kundakovic, M.; Mitchell, A.; & Akbarian, S. (2016). Epigenetic basis of mental illness. The Neuroscientist, 22(5), 447-463.
Öst, A.; Lempradl, A.; Casas, E.; Weigert, M.; Tiko, T.; Deniz, M., . . . Stoeckius, M. (2014). Paternal diet defines offspring chromatin state and intergenerational obesity. cell, 159(6), 1352-1364.
Pembrey, M. E.; Bygren, L. O.; Kaati, G.; Edvinsson, S.; Northstone, K.; Sjöström, M., & Golding, J. (2006). Sex-specific, male-line transgenerational responses in humans. European Journal of Human Genetics, 14(2), 159-166.
Radford, E. J.; Ito, M.; Shi, H.; Corish, J. A.; Yamazawa, K.; Isganaitis, E., . . . Erkek, S. (2014). In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science, 345(6198), e1255903.
Rakyan, V. K.; Chong, S.; Champ, M. E.; Cuthbert, P. C.; Morgan, H. D., Luu, K. V., & Whitelaw, E. (2003). Transgenerational inheritance of epigenetic states at the murine Axin Fu allele occurs after maternal and paternal transmission. Proceedings of the National Academy of Sciences, 100(5), 2538-2543.
Ritvo, L. B. (1965). Darwin as the source of Freud’s neo-Lamarckianism. Journal of the American Psychoanalytic Association, 13(3), 499-517.
Ritvo, L. B. (1974). The impact of Darwin on Freud. The Psychoanalytic Quarterly, 43(2), 177-192.
Siklenka, K., Erkek, S., Godmann, M., Lambrot, R., McGraw, S., Lafleur, C., ... & Kimmins, S. (2015). Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science, 350(6261), eaab2006.
Solms, M.; & Panksepp, J. (2012). The “Id” knows more than the “Ego” admits: Neuropsychoanalytic and primal consciousness perspectives on the interface between affective and cognitive neuroscience. Brain Sciences, 2(2), 147-175.
Solms, M. (2020). New project for a scientific psychology: General scheme. Neuropsychoanalysis, 22(1-2), 5-35.
Sulloway, F. J. (1992). Freud, biologist of the mind: Beyond the psychoanalytic legend. New Heaven: Harvard University Press.
Szyf, M. (2015). Nongenetic inheritance and transgenerational epigenetics. Trends in molecular medicine, 21(2), 134-144.
Szyf, M. (2022). The epigenetics of perinatal stress. Dialogues in clinical neuroscience.
Tansey, E. (1997). Not committing barbarisms: Sherrington and the synapse, 1897. Brain research bulletin, 44(3), 211-212.
Waddington, C. H. (1959). Canalization of development and genetic assimilation of acquired characters. Nature, 183, 1654-1655.
Walsh, J. B. (1996). Epigenetic inheritance and evolution: The Lamarckian Dimension. Evolution, 50(5), 2115-2119.
Weaver, I. C.; Cervoni, N.; Champagne, F. A.; D’Alessio, A. C.; Sharma, S.; Seckl, J. R.; . . . Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature neuroscience, 7(8), 847-854.
Wollheim, R. (1971). Freud. London: Fontana Press.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Psicologia USP

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Todo o conteúdo de Psicologia USP está licenciado sob uma Licença Creative Commons BY-NC, exceto onde identificado diferentemente.
A aprovação dos textos para publicação implica a cessão imediata e sem ônus dos direitos de publicação para a revista Psicologia USP, que terá a exclusividade de publicá-los primeiramente.
A revista incentiva autores a divulgarem os pdfs com a versão final de seus artigos em seus sites pessoais e institucionais, desde que estes sejam sem fins lucrativos e/ou comerciais, mencionando a publicação original em Psicologia USP.