Efeito de roupas de biocerâmica na prova de corrida de 10 km
DOI:
https://doi.org/10.11606/1807-5509201800020189Palavras-chave:
Biocerâmica, Exercício aeróbio, Radiação infravermelha longa, Lactato, Dor muscularResumo
O objetivo deste trabalho foi analisar os efeitos de roupas de biocerâmica na performance de corrida de 10 km. Dez homens jovens (idade 27,9 ± 4,2 anos; estatura 1,8 ± 0,1 m; massa corporal 73,0 ± 7,5 kg; índice de massa corporal (IMC) 23,5 ± 2,3 kg·m2; percentual de gordura 19,3 ± 4,2 %) participaram do estudo. Os participantes visitaram a pista de atletismo para três corridas de 10 km em 3 condições: utilizando roupas de biocerâmica (CER), placebo (PLA) e utilizando roupas pessoais (C). A ordem dos testes foi randomizada e os sujeitos desconheciam a condição de intervenção. O teste de Friedman ou ANOVA de medidas repetidas foram utilizados para comparar as condições. A Mínima Mudança Detectável e o Tamanho de Efeito também foram calculados. Não foram encontradas diferenças significantes. A análise da Mínima Mudança Detectável sugeriu uma “Possível” redução no tempo para a condição CER (C - 52,3 ± 4,1; PLA – 53,1 ± 5,0; CER 51,4 ± 3,8 minutos). A análise da concentração de lactato mostrou uma remoção mais rápida quando os participantes utilizaram a roupa de biocerâmica. A percepção da dor muscular foi classificada como “Possível” maior na condição CER, e a percepção subjetiva do esforço da sessão (PSEsessão) também foi maior nesta condição; essa diferença foi classificada pela análise de Cohen do Tamanho de Efeito como “Pequena” (C – 425,7 ± 74,8; PLA – 426,6 ± 87,5; CER – 440,1 ± 42,5 A.U.). Os resultados sugerem que o uso de roupas de biocerâmica podem melhorar a performance de corrida. Mais estudos são necessários para determinar a dosagem ideal, como o tempo de uso e fatores que influenciam a absorção.
Downloads
Referências
Malfatti CRM, Laat EF, Soler L, Bronkhorst I. O uso de recursos ergogênicos e seus efeitos na saúde e performance física de atletas. Cinergis. 2008;9(1):7-14.
Leal Junior ECP, Godoi V, Mancalossi JL, Rossi RP, de Marchi T, Parente M, et al. Comparison between cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) in short-term skeletal muscle recovery after high-intensity exercise in athletes-preliminary results. Lasers Med Sci. 2011;26(4):493-501.
Borsa PA, Larkin KA, True JM. Does phototherapy enhance skeletal muscle contractile function and postexercise recovery? A systematic review. J Athl Train. 2013;48(1):57-67.
Leal Junior ECP, Vanin AA, Miranda EF, Carvalho PT, Dal Corso S, Bjordal JM. Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci. 2013;30(2):925-39.
Leung TK, Lin JM, Chien HS, Day TC. Biological effects of melt spinning fabrics composed of 1% bioceramic material. Text Res J. 2012;82(11):1121-30.
Vatansever F, Hamblin MR. Far infrared radiation (FIR): its biological effects and medical applications. Photonics Lasers Med. 2012;1(4):1-12.
Leung TK, Kuo CH, Lee CM, Kan NW, Hou CW. Physiological effects of bioceramic material: harvard step, resting metabolic rate and treadmill running assessments. Chin J Physiol. 2013;56(6):334-40.
Leung TK, Chen CH, Lai CH, Lee CM, Chen CC, Yang JC, et al. Bone and joint protection ability of ceramic material with biological effects. Chin J Physiol. 2012;55(1):47-54.
Leung TK, Chen CH, Tsai SY, Hsiao G, Lee CM. Effects of far infrared rays irradiated from ceramic material (BIOCERAMIC) on psychological stress-conditioned elevated heart rate, blood pressure, and oxidative stress-suppressed cardiac contractility. Chin J Physiol. 2012;55(5):323-30.
Leung TK, Lee CM, Tsai SY, Chen YC, Chao JS. A pilot study of ceramic powder far-infrared ray irradiation (cFIR) on physiology: observation of cell cultures and amphibian skeletal muscle. Chin J Physiol. 2011;54(4):247-54.
Leung TK, Lin YS, Lee CM, Chen YC, Shang HF, Hsiao SY, et al. Direct and indirect effects of ceramic far infrared radiation on the hydrogen peroxide-scavenging capacity and on murine macrophages under oxidative stress. J Med Biol Eng. 2011;31(5):345-51.
Noponen P. Effects of far infrared warm on recovery in power athletes during a 5-day training period [dissertation]. Jyväskylä: University of Jyväskylä; 2013.
Leung TK, Huang PJ, Chen YC, Lee CM. Physical-chemical test platform for room temperature, far-infrared ray emitting ceramic materials (cFIR). J Chinese Chem Soc. 2011;58(5):653-8.
Lai CH, Leung TK, Peng CW, Chang KH, Lai MJ, Lai WF, et al. Effects of far-infrared irradiation on myofascial neck pain: a randomized, double-blind, placebo-controlled pilot study. J Altern Complement Med. 2014;20(2):123-9.
Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports and Exerc. 1982;14(5):377-81.
Antonialli FC, De Marchi T, Tomazoni SS, Vanin AA, Grandinetti VS, De Paiva PR, et al. Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci. 2014;29(6):1967-76.
Delextrat A, Calleja-González J, Hippocrate A, Clarke ND. Effects of sports massage and intermittent cold-water immersion on recovery from matches by basketball players. J Sports Sci. 2013;31(1):11-19.
Wallace LK, Slattery KM, Coutts AJ. A comparison of methods for quantifying training load: relationships between modelled and actual training responses. Eur J Appl Physiol. 2014;114(1):11-20.
Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York: Routledge; 1988. p. 567.
Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3-13.
De Marchi T, Leal Junior EC, Bortoli C, Tomazoni SS, Lopes-Martins RA, Salvador M. Low-level laser therapy (LLLT) in human progressive-intensity running: Effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci. 2012;27(1):231-6.
Alves MAS, Pinfildi CE, Neto LN, Lourenço RP, de Azevedo PH, Dourado VZ. Acute effects of low-level laser therapy on physiologic and electromyographic responses to the cardiopulmonary exercise testing in healthy untrained adults. Lasers Med Sci. 2014;29(6):1945-51.
Dias FJ, Issa JP, Vicentini FT, Fonseca MJ, Leão JC, Siéssere S, et al. Effects of low-level laser therapy on the oxidative metabolism and matrix proteins in the rat masseter muscle. Photomed Laser Surg. 2011;29(10):677-84.
Ferraresi C, De Brito Oliveira T, De Oliveira Zafalon L, De Menezes Reiff RB, Baldissera V, De Andrade Perez SE, et al. Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci. 2011;26(3):349-58.
Silveira PC, Streck EL, Pinho RA. Evaluation of mitochondrial respiratory chain activity in wound healing by low-level laser therapy. J Photochem Photobiol B. 2007;86(3):279-82.
Amaral AC, Parizotto NA, Salvini TF. Dose-dependency of low-energy HeNe laser effect in regeneration of skeletal muscle in mice. Lasers Med Sci. 2001;16(1):44-51.
Amat A, Rigau J, Waynant RW, Ilev IK, Anders JJ. The electric field induced by light can explain cellular responses to electromagnetic energy: a hypothesis of mechanism. J Photochem Photobiol B. 2006;82(2):152-60.
Ferraresi C, Panepucci R, Reiff R, Júnior E, Bagnato V, Parizotto NA. Molecular effects of low-level laser therapy (808nm) on human muscle performance. Phys Ther Sport. 2012 Aug;13(3):e5.
Manteifel V, Bakeeva L, Karu T. Ultrastructural changes in chondriome of human lymphocytes after irradiation with He-Ne laser: appearance of giant mitochondria. J Photochem Photobiol B. 1997;38(1):25-30.
Bertuzzi RCM, Nakamura FY, Rossi LC, Kiss MAPD, Franchini E. Temporal independence of perceived exertion response and heart rate in relation to run velocity at a 10 km test simulation. Rev Bras Med Esporte. 2006;12(4):161-5.
Haddad M, Chaouachi A, Wong P, Castagna C, Hambli M, Hue O, et al. Influence of fatigue, stress, muscle soreness and sleep on perceived exertion during submaximal effort. Physiol Behav. 2013;119:185-9.
Lima-Silva AE, Bertuzzi RC, Pires FO, Barros RV, Gagliardi JF, Hammond J, et al. Effect of performance level on pacing strategy during a 10-km running race. Eur J Appl Physiol. 2010;108(5):1045-53.
Billat LV. Use of blood lactate measurements for prediction of exercise performance and for control of training. Recommendations for long-distance running. Sport Med. 1996 Sep;22(3):157-75.
Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. 2004;287(3):R502-16.
Leal-Junior ECP, Lopes-Martins RAB, Baroni BM, de Marchi T, Rossi RP, Grosselli D, et al. Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg. 2009;27(4):617-23.
Leal Junior EC, Lopes-Martins RA, Vanin AA, Baroni BM, Grosselli D, De Marchi T, et al. Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci. 2009;24(3):425-31.
Denis R, O’Brien C, Delahunt E. The effects of light emitting diode therapy following high intensity exercise. Phys Ther Sport. 2013;14(2):110-5.
Baroni BM, Leal Junior ECP, de Marchi T, Lopes AL, Salvador M, Vaz MA. Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol. 2010;110(4):789-96.
Hausswirth C, Louis J, Bieuzen F, Pournot H, Fournier J, Filliard JR, et al. Effects of whole-body cryotherapy vs. far-infrared vs. passive modalities on recovery from exercise-induced muscle damage in highly-trained runners. PLoS One. 2011;6(12):e27749.
Borges LS, Cerqueira MS, Rocha JAS, Conrado LAL, Machado M, Pereira R, et al. Light-emitting diode phototherapy improves muscle recovery after a damaging exercise. Lasers Med Sci. 2014;29(3):1139-44.
Downloads
Publicado
Edição
Seção
Licença
Todo o conteúdo da revista, exceto onde está identificado, está licenciado sob uma Licença Creative Commons (CC-BY)