A obtenção direta do VO2máx não é influenciada pela característica dos protocolos de teste de esforço máximo

Autores

  • Alberto Souza Sá Filho Universidade Evangélica de Goiás, Anápolis, GO, Brasil.
  • Thiago Albernaz Silva Universidade Evangélica de Goiás, Anápolis, GO, Brasil.
  • Marcelo Magalhães Sales Universidade Estadual de Goiás. Departamento de Educação Física, Campus Quirinópolis, GO, Brasil.
  • Iransé Oliveira-Silva Universidade Evangélica de Goiás, Anápolis, GO, Brasil.
  • Gilberto Reis Agostinho Universidade Salgado de Oliveira. Departamento de Educação Física, Goiânia, GO, Brasil.
  • Sérgio Machado Instituto Neurodiversidade, Queimados, Rio de Janeiro, RJ, Brasil.
  • Gustavo de Conti Teixeira Costa Universidade Federal de Goiás. Departamento de Educação Física, Goiânia, GO, Brasil.
  • Ercole da Cruz Rubini Universidade Estácio de Sá, Rio de Janeiro, RJ, Brasil.

DOI:

https://doi.org/10.11606/

Palavras-chave:

Consumo máximo de Oxigênio, Frequência cardíaca, Tempo limite, Exercício aeróbio

Resumo

Os valores de consumo máximo de oxigênio (VO2Máx) obtidos de forma indireta são influenciados pela característica ou configuração do protocolo de exercício. Entretanto, não está claro na literatura se tal prerrogativa é verdadeira quando o VO2Máx é mensurado de forma direta. Objetivou-se comparar os valores do VO2Máx e da frequência cardíaca máxima (FCmáx) obtidos através de um protocolo incremental progressivo máximo (TMáx) e de um protocolo de carga contínua de tempo limite (TLim), baseado na potência do VO2Máx. 12 ciclistas recreacionais (Idade = 36,0 ± 9,3 anos; estatura = 173,2 ± 5,9 cm; massa corporal = 78,5 ± 10,7 Kg), treinados para provas amadoras de longa distância, participaram do estudo. Foi realizado um teste progressivo máximo (TMáx) no cicloergômetro com incrementos de 22,5 W a cada minuto, com uma carga inicial de 157,5 W mantendo uma rotação padronizada de 90 RPM. O TLim foi realizado na mesma rotação até a exaustão a partir da menor potência de ocorrência do VO2Máx (PVO2Máx). O teste t de students foi utilizado para a comparação das variáveis dependentes, sendo assumido um nível de significância de p≤0,05. Não houve diferença significativa nos valores de VO2Máx e FCmáx (TMáx = 45,02 ± 7,21 ml·kg-1·min-1 vs TLim = 44,17 ± 7,21 ml·kg-1·min-1) e (FCTMáx = 182,9 ± 9,2 bpm vs FCTLim = 181,3 ± 7,5 bpm), respectivamente, quando comparados os dois testes. O teste do TLim de carga constante na PVO2Máx forneceu valores fidedignos de VO2Máx e de FCmáx, e em uma relação de tempo mais eficiente, comparado a um protocolo incremental máximo.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Smirmaul BP, Bertucci DR, Teixeira IP. Is the VO2max that we measure really maximal? Front Physiol. 2013;4:203.

Noakes TD, St Clair Gibson A. Logical limitations to the "catastrophe" models of fatigue during exercise in humans. Br J Sports Med. 2004;38:648-9.

Noakes TD, St Clair Gibson A, Lambert EV. From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans. Br J Sports Med. 2004;38:511-4.

Bergh U, Ekblom B, Astrand PO. Maximal oxygen uptake "classical" versus "contemporary" viewpoints. Med Sci Sports Exerc. 2000;32:85-8.

Noakes TD. How did A V Hill understand the VO2max and the "plateau phenomenon"? Still no clarity? Br J Sports Med. 2008;42:574-80.

Hermansen L, Saltin B. Oxygen uptake during maximal treadmill and bicycle exercise. J Appl Physiol. 1969;26:31-7.

Saltin B. Oxygen uptake and cardiac output during maximal treadmill and bicycle exercise. Mal Cardiovasc. 1969;10:393-9.

Ekblom B. To measure physical performance in many sports is often very easy and is also done with great precision. Scand J Med Sci Sports. 2000;10:119-22.

Billat V, Faina M, Sardella F, et al. A comparison of time to exhaustion at VO2 max in elite cyclists, kayak paddlers, swimmers and runners. Ergonomics. 1996;39:267-77.

Froelicher VF, Jr., Brammell H, Davis G, et al. A comparison of three maximal treadmill exercise protocols. J Appl Physiol. 1974;36:720-5.

Froelicher VF, Jr., Brammell H, Davis G, et al. A comparison of the reproducibility and physiologic response to three maximal treadmill exercise protocols. Chest. 1974;65:512-7.

Duncan GE, Howley ET, Johnson BN. Applicability of VO2max criteria: discontinuous versus continuous protocols. Med Sci Sports Exerc. 1997;29:273-8.

Buchfuhrer MJ, Hansen JE, Robinson TE, et al. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol Respir Environ Exerc Physiol. 1983;55:1558-64.

Yoon BK, Kravitz L, Robergs R. VO2max, protocol duration, and the VO2 plateau. Med Sci Sports Exerc. 2007;39:1186-92.

Midgley AW, Bentley DJ, Luttikholt H, McNaughton LR, Millet GP. Challenging a dogma of exercise physiology: does an incremental exercise test for valid VO 2 max determination really need to last between 8 and 12 minutes? Sports Med. 2008;38:441-7.

Jones AM, Grassi B, Christensen PM, et al. Slow component of VO2 kinetics: mechanistic bases and practical applications. Med Sci Sports Exerc. 2011;43:2046-62.

Lepretre PM, Koralsztein JP, Billat VL. Effect of exercise intensity on relationship between VO2max and cardiac output. Med Sci Sports Exerc. 2004;36:1357-63.

Carita R, Greco C, Pessoa Filho D. Cinética do VO2 durante o exercício realizado na potência crítica em ciclistas e indivíduos não-treinados no ciclismo. Motriz. 2013;19:412-22.

Billat VL. VO2 slow component and performance in endurance sports. Br J Sports Med. 2000;34:83-5.

Billat VL, Morton RH, Blondel N, et al. Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake. Eur J Appl Physiol. 2000;82:178-87.

Morton RH, Billat V. Maximal endurance time at VO2max. Med Sci Sports Exerc. 2000;32:1496-504.

Renoux JC, Petit B, Billat V, Koralsztein JP. Calculation of times to exhaustion at 100 and 120% maximal aerobic speed. Ergonomics. 2000;43:160-6.

ACSM. Diretrizes do ACSM para os Testes de Esforço e sua Prescrição: Guanabara Koogan; 2009.

Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40:497-504.

Siri W. Body Composition from fluid spaces and density: Analysis os methods. National Academy os Science. 1961;223-44.

Borg G. Escala de Borg para Dor e o Esforço Percebido: Manole; 1999.

Billat LV. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part II: anaerobic interval training. Sports Med. 2001;31:75-90.

Billat LV. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med. 2001;31:13-31.

Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43:927-54.

Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Med. 2013;43:313-38.

Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002;32:53-73.

Demarie S, Koralsztein JP, Billat V. Time limit and time at VO2max' during a continuous and an intermittent run. J Sports Med Phys Fitness. 2000;40:96-102.

Coyle EF, Coggan AR, Hopper MK, Walters TJ. Determinants of endurance in well-trained cyclists. J Appl Physiol. 1988;64:2622-30.

Coyle EF, Feltner ME, Kautz SA, et al. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc. 1991;23:93-107.

Nummela AT, Paavolainen LM, Sharwood KA, et al. Neuromuscular factors determining 5 km running performance and running economy in well-trained athletes. Eur J Appl Physiol. 2006;97:1-8.

Paavolainen L, Nummela A, Rusko H. Muscle power factors and VO2max as determinants of horizontal and uphill running performance. Scand J Med Sci Sports. 2000;10:286-91.

Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG. Interval training program optimization in highly trained endurance cyclists. Med Sci Sports Exerc. 2002;34:1801-7.

Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG. Influence of high-intensity interval training on adaptations in well-trained cyclists. J Strength Cond Res. 2005;19:527-33.

Coyle EF. Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev. 1995;23:25-63.

Billat V, Binsse V, Petit B, Koralsztein JP. High level runners are able to maintain a VO2 steady-state below VO2max in an all-out run over their critical velocity. Arch Physiol Biochem. 1998;106:38-45.

Billat VL, Richard R, Binsse VM, Koralsztein JP, Haouzi P. The V(O2) slow component for severe exercise depends on type of exercise and is not correlated with time to fatigue. J Appl Physiol. 1998;85:2118-24.

Laursen PB, Shing CM, Jenkins DG. Reproducibility of the cycling time to exhaustion at .VO2peak in highly trained cyclists. Can J Appl Physiol. 2003;28:605-15.

Laursen PB, Shing CM, Jenkins DG. Temporal aspects of the VO2 response at the power output associated with VO2peak in well trained cyclists--implications for interval training prescription. Res Q Exerc Sport. 2004;75:423-8.

Downloads

Publicado

2023-12-31

Edição

Seção

Artigos

Como Citar

Sá Filho, A. S., Silva, T. A., Sales, M. M., Oliveira-Silva, I., Agostinho, G. R., Machado, S., Costa, G. de C. T., & Rubini, E. da C. (2023). A obtenção direta do VO2máx não é influenciada pela característica dos protocolos de teste de esforço máximo. Revista Brasileira De Educação Física E Esporte, 37, e37190127. https://doi.org/10.11606/