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A generalization of the concept of differentiability

José Carlos Simon de Miranda and Luiz Fichmann

Abstract. In this work we unify and generalize the existing definitions
of derivatives of functions by presenting a new concept on differentia-
bility.

1. Introduction

There are classic definitions for derivatives of functions from a Banach
space to another one, due to Gateaux, Hadamard and Fréchet. The rate
of change of a function restricted to straight lines through a given point
is its Gateaux-derivative at that point; although a function may have this
derivative at a point, it may not have the local rate of change which would
correspond to its Fréchet-derivative. In this work (Theorem 3.1) we show
that Hadamard derivative at a point is the rate of change of the function
along each and every embedded C''-curve that passes through that point;
thus, the class of functions that has Hadamard-derivative contains that of
Fréchet differentiable functions and is contained in Gateaux differentiable
class of functions, since limits through straight lines are weaker than limits
through embedded C''- curves which are weaker than limits through neigh-
bourhoods. It is important to note that in all these derivatives the type
of sets which is used to calculate the rate of change is the fundamental
element for distinguishing one from another. These facts lead us to imag-
ine the use of other sets to calculate these limits, namely topological or
differentiable manifolds. We have chosen manifolds that are embedded in
affine spaces; for example, if we take C''- curves embedded in straight lines
we obtain Gateaux-differentiability and taking all embedded C'- curves
we obtain Hadamard differentiability. What would happen if we chose C-
curves embedded in two-dimensional planes, C''- curves embedded in n-
dimensional spaces, m-dimensional manifolds embedded in n-dimensional
affine spaces or infinite-dimensional manifolds? Differentiable manifolds
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are locally images of differentiable embeddings in the already known dif-
ferentiabilities which are defined by the type of sets in which the rate of
change is calculated. How can we generalize these ideas? In this work we
propose a hierarchical choice of types of sets to define the new differentia-
bilities. By its turn, each of these sets, recursively, are C!- differentiable
manifolds according to smaller sets in its hierarchy till we arrive at the first
differentiability performed through a topological manifold. This hierarchi-
cal choice is formally made by the concept of vias of Banach spaces and each
via defines a differentiability. This definition of differentiablity will not only
include the former ones but also generalize the concept of differentiability.
As a matter of fact, Fréchet, Hadamard and Gateaux derivatives will have
their own corresponding vias. The class of Fréchet differentiable functions,
which is the one contained in the other ones, and that of Gateaux, which
contains the other ones, will still remain as the extremes of an inclusion
ordered set of “via-differentiability classes” but a wide spectrum of dif-
ferentiabilities arises in between them. One of these differentiabilities is
Hadamard-differentiablity. We wish you a good reading!

2. Some Basics

Let X,Y be real Banach spaces. We denote by L(X,Y) the set of contin-

uous linear functions from X to Y. For zo € U C X, U open set of X and

f:U =Y, we say that

i) f is Gateaux differentiable at o and write G-differentiable at z if and

only if there exists the G-derivative § f(zg,.) : X — Y given by, for v € X,
5 (20, v) = lim LEH 1) = £(z0)

t—0 t
teR

ii) f is Hadamard differentiable at =, (H-differentiable at xg) if and only
if there exists the H-derivative ¥ f'(z9) € L(X,Y), given by, for v € X,
Hf‘(l‘g)v — litn f(i“{] +tv+ ﬂ) — f(:CG)

(t,0)—(0,0) t
(tLHERXX

Hadamard differentiability was originally defined for functions f : U C
X — Y, where X and Y are topological vector spaces (see [1, 3, 4, 6,
10]). Let us call, for instance, the original definition, in our context, H-
differentiabitity.

Let G be the class of all functions g : I — U, I C R neighbourhood of 0,

such that g(0) = zo and 3 ¢/(0) = F“% g(t) ; 9(0) € X.
The function f is H-differentiable at g if and only if 3 a f!(zo) € L(X,Y)



A generalization of the concept of differentiability 399

(fo9)®) = (f29)(0) _y
t

such that Vg € G, 3(fog)'(0) = tlin{l)

and (f o g)'(0) =" f'(20)g'(0).

We estabilish the equivalence between this Hadamard’s original definition
and the one given above in item ii) (which was presented in [9]), in Propo-
sition 2.1.

iii) f is Fréchet differentiable at z¢ (F-differentiable at z¢) if and only if
there exists the F-derivative f'(zg) € L(X,Y) such that

ligg {0+ R) — f(@0) f'(xo)h

m
= Al

Let us define the classes of differentiable functions at xg, relative to these
differentiability types by:
Foo( X,Y)={f:U—->Y |20 € U C X, U open set,

f is F-differentiable at zo}
Hp (X, Y)={f:U—-Y|zo € U C X, U open set,

f is H-differentiable at zo}
Go(X,)Y)={f:U > Y|zo € U C X, U open set,

f is G-differentiable at zo and ¢ f(zo,.) € L(X,Y)}.

=0eY

Many results concerning these derivatives are shown in [9] from which
we select:

Proposition 2.1 (some results from [9]).

a) 3 f'(zo) = 3 f'(z0) & 3% f'(z0) = 36 f (20, .)
and whenever some of them exist, they are equal.
Thus we have Fpy(X,Y) C Hyy(X,Y) C G (X, Y).
b) If f € H,,(X,Y) then f satisfies

(O)ao |1f (zo + ) — f(zo)|| = O(R)
(that is,

IM >0, 3r >0 | Vhe X, ||h]] < r = |If(z0+h) - f(zo)l| < M]|h]].)
c) If dim X < oo then F,,(X,Y) = H,,(X,Y).

Proof. a) If f € F,,(X,Y), taking h = tv + tl, since

f(zo +tv + ) — fxo) — t f'(xo)v _

Hzo )= fag) = f sl Mo +1l gy

and the second member above goes to 0 when (t,1) — (0,0) e R x X
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(for h = 0, f € Fpy (X,Y) is bounded as t — 0),

then f € H,,(X,Y) and # f'(z0) = f'(zo).
Take now f € H, (X,Y). If f is not H-differentiable at zy we have that
Jdg € G, 0>Oa,ndtn?éO,t,,—>0inRasn—sooinNsuchthat

anat Ml 41

(f °9)(ftn (zo) H ' (20)g (0) || > €0 Vn € N.
Taking Iy M = 9'(0) and v =g/(0) we have
£ (o + tuv tjnm ~f(z) n ff(m)v' >e  VneN,

a contradiction since f € Hyo(X,Y).
Then f is H-differentiable at zo and ¥ f/(xo) =H f/(xq).
On the other hand, suppose f H-differentiable at zo. If f ¢ H,,(X,Y) we
have that v € X, g9 > 0,t, #0,%, »0inRandl, —» 0in X asn — oo in
t taln) — fl(z 2
N such that || £%2 "”t nln) = f(20) _ Hf’(zg)u“ >ep  VYneN.
Take g :] — 1,1[— U given by g(t,) = o + thv + tal, YneN
and g(t) = xg + tv otherwise.
coe g) —g(0) _
We see that g € G since Em{l)—*t— = tlm%(v +(t)) = v where
I(tn) - In YneN (fo g)(tn) o (fo g)(O) __I:I ' ]
{ I{ty=0  otherwise find ” tn f(0)g'(0)
Wn € N, a contradiction since f is H -differentiable at xq.
Then f € Hz,(X,Y) and H pt(20) =H f'().
Now, if f is H-differentiable at xg, given v € X it is suiﬁc_ient to take
g(t) = mo + tv to see that f € G4, (X,Y) and 6 f(zo,.) =7 f'(x0).
b) If f € H,,(X,Y), taking v—0€ X wehave Iim 2ott)—f(z)

(t,)~(0,0) t
(t.ERX X
Then fixing € > 0 ( € = 1, for example), 3 6; >0, d > 0 with 6 < §4|
0# |t <6, [ll]l <= ||f(zo+t) — fl=o)l]| <elt].

Set r = 62 and M = g For h € X with 0 < ||h]| < r we have that h = ] where

=0.

||| h r
tz———.f-—é&ndt-ﬁ—:é,£=5<6,then
[|f(zo + k) — f(zo)]] < e” ” = M||h|l. So f satisfies (O)z,.

c¢) Suppose dim X < oo and f € H. (X,Y). If f is not F- differentiable at x,
we have that Je¢ > 0 and h, # 0, h, — 0in X as n — oo in N such that
H (@0 + hn) — f(zo) = f'(z0)hn
1
{[Anl|

>ey VYn€eN. Set v, =

|lAnl]’
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50 ||vn|] = 1, ¥n € N. Since dim X < oo, taking a subsequence, if necessary,
we will have v, — v for some v € X with ||v|| = 1. Then, for t, = ||hn|| and
lp = vp — v, we have hy, = tav, = thv + tal, and
t taly) —
EDEHf(IO-’- nv""tnn) f(xﬂ) _Hf.!
n
since f € Hy,(X,Y), a contradiction! Thus f € F,,(X,Y).

(zo)v = f'(z0)la|| — 0 as n — oo,

a

Gateaux differentiability encompasses a greater class of functions than the
other ones. Even for the simple case X = R? and Y = R there are examples
of functions f such that f € G;,(X,Y) and f ¢ H.(X,Y) = Fp o (X, Y).

From now on, X and Y are real Banach spaces, X # {0} # Y and zp € X.
Whenever it is necessary, functions f: Uy C X - Y and g: Us C X — Y
are identified when they coincide on U, open set of X, 7o € U C Uy N Us.

Definition 2.1 (Limit through a set). Let U C X, S C X and xp be an
accumulation point of SNU.

The limit through S of the function g:U — Y at z¢ will be denoted by
:ﬁ_{pu g(z) and is defined by 2111110 gz)=LeY &

zeS zES

Ve>0, 3>0| (zeSNUAO< |z —x0] <d) = |lg(z) — L]| <&.

Observe that when S C U is a neighbourhood of z the definition above
reduces to the ordinary limit of a function.

Example: Take X =R? Y =R, U = (R} — {1}) x R%,, where

R} = {t € R|t >0}, and g : U — Y written g(z) = log, b where z = (a,b).
Let 2o = (1,1) and for each r € R define S; = {(a,b) € R} x R} |b=a"}.
So for all r € R we have :111’]30 g(z) = r. This exemplifies the important fea-

zESr
ture of limits through sets: A function may not have limit, in the ordinary

sense, at g but still can exhibit infinitely many limits through sets at xg.
The following Lemmas will be useful.

Lemma 2.1. Let Uy, Us and S be subsets of X such that xg is an accu-
mulation point of Uy NU;N S, and let g; : U; — Y, i = 1,2, be functions.
If there exists the limits lim g1(z) = Ly and lim g2(z) = Ly then there

TE TE
also ezists the limits lim [g1 + g2](z) = Ly + Ly and zllrgn tgi(z) = tLy for

zE€ z€eS
allt e R.

Proof. Immediate. O

Lemma 2.2. i) Assuming the same notation in Definition 2.1, let also
S C S such that zq is still an accumulation point of S NU. Then, the
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folluring implication holds:

(100 -2) (;i:zz o(e) = L)
z€ zeS

i) If S = SNV, 2o € V open set of X, then we may replace the implication
above by an equivalence.

Proof. Immediate. O

3. Differentiability in types of sets and Hadamard
derivative

Let f:UC X =Y, xg € U be as in the previous section.
Our goal here is to prove that the differentiability of f at zq, be it in the
sense of Gateaux, Fréchet or Hadamard, is equivalent to the existence of a
bounded linear operator T € L(X,Y) such that the relation
(1) i &0t h) = f(mo) —-T(h) _, v

e Tl
is fullfilled for all sets S € § C P(X) where S is a special class of subsets
of X.
More specifically:
I) For G-differentiability (with bounded linear derivative), S should be the
class of all open neighbourhoods of 0 in all unidimensional subspaces of X.
IT) For F-differentiability, S should be the class of all open neighbourhoods
of 0 in X.
III) For H-differentiability, assuming that f satisfies (O),,,S should be
the class of all embedded C'-curves passing through 0.
We note that each one of these classes is constituted by a type of embedded
submanifold passing through 0 which is characterized by the dimension of
the submanifold and by the dimension of the subspace which the manifold
is embedded. We indicate these classes by
I) 841,1) ={V C E C X|E subspace of X, dim E =1, V open neighbour-
hood of 0 in E}.
II) S(x,x) = {V C X|V open neighbourhood of 0}.
) S xy ={n(V) C X|y: V CR — X C'-embedding, V open neigh-
bourhood of 0 in R, ~(0) = 0}.

This leads us to define other types of classes of subsets of X. Set Ny =
N* = N\ {0} if dimX = oo and set Nx = {n € N* | n < dim X} if
dim X < oo.
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Definition 3.1. For m,n € Nx, m < n, we define the following classes
of embedded submanifolds of X :

Simn) = {7(V) € X|y: V C R™ — E topological embedding, E subspace
of X, dim E =n, V open neighbourhood of 0 in R™, ~(0) = 0}.

8(1m,n} ={y(V) C X|y:V CR™ - E C'-embedding, E subspace of X,
dim E = n, V open neighbourhood of 0 in R™, ~(0) = 0}.

Simx) = {7(V) € X|y : V. C R™ — X topological embedding, V open
neighbourhood of 0 in R™, ~(0) = 0}.

‘S(lm,X) ={y(V)C X|y:V C R™ - X C'-embedding, V open neighbour-
hood of 0 in R™, ~+(0) = 0}.

By topological embedding we mean a map v which is a homeomorphism
onto its image and by C''-embedding we mean a topological embedding of
class C! whose differential is injective at every point.

Since in the definition above the domain of «y is always finite dimensional,
the differentiability of « is to be understood, as usual, in the sense of
Fréchet.

Note that S(lm.n} C Stmn) C Sgm,x) and S(lm‘n) C S(lm'x) C Sim,x)

also Sgn,n) = S(ln‘n) = {V C E C X|E subspace of X, dim E =n, V open
neighbourhood of 0 in E}, Vm,n € Nx, m <n.

In the next section we generalize these classes of embedded submanifolds
using the notion of “vias of Banach spaces”, so that we do not restrict
ourselves only to the case where the domain of v is finite dimensional,
neither only to Fréchet differentiability. Each “via” will determine a class
S of embedded submanifolds of X and a type of differentiability for f
at xp, which will be precisely the existence of a bounded linear operator
T € L(X,Y) such that (1) is fullfilled for all sets § € S. We will see that
the classes given in Definitions 3.1 are associated to particular “vias”.

Let us, for now, define the type of differentiability according to a class
S CcP(X).

Definition 3.2. Given & C P(X) such that 0 is an accumulation point of
every S € S, we define the class S,,(X,Y) of S-differentiable functions at

xg, by:

Szo(X,Y) ={f : U - Y|U open neighbourhood of zp in X, 3T € L(X,Y)
such that (1) is fullfilled VS € S}.

For the classes of Definition 3.1, more specifically,
when & = Sy n) we put Szo(X,Y) = (Mm,n)q,(X,Y)
when 8 = S(]m_n} we put Sz,(X,Y) = (m,n);, (X,Y)
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when 8 = S x) we put Sgy(X,Y) = (M, X)z, (X,Y)
when S = S{lm‘x) we put Spy (X, Y) = (m, X); (X,Y)Vm,n € Nx, m < n.
Let us put also Szo(X,Y) = (X, X)2 (X,Y) if S = S(x,x)-

From what we have observed above about the inclusion of classes we can
see that (m, X)4(X,Y) C (m,n)g(X,Y) C (m, n);o(X,Y) and

(m, X)eo(X,Y) C (m, X)3, (X,Y) C (m,n)} (X,Y), also

(n,n)ze(X,Y) = (n,n)}m(X, ¥) VYm,n € Nx, m <n.

The unicity of operator T' € L(X,Y) when (1) is satisfied ¥S € S, for §
given in Definition 3.1, will be shown in the next proposition, where we
will see that T' = df(=zg,.), the G-derivative of f at xg. When f is S-
differentiable at zg we call T = Sdf(z¢) = Sf'(x0), the S-derivative of f
at xop.

The next proposition characterizes Gateaux and Fréchet differentiabilities.

Proposition 3.1. a) G;,(X,Y) = (1,1),(X,Y)

b) qu(X:Y) = (X!X)zu(XrY)

c) Let S be one of the classes given in Definition 3.1, then

Fpo(X,Y) C S5p(X,Y) C Goo(X,Y) and if f € Sgo(X,Y) and T €
L(X,Y) is such that (1) is fulfilled VS € S, then T = 6f(xo,.), the G-

derivative of f at xp.

Proof. a) For § € §,;) we have Jv € X, [|[v|| = 1, 3V C R open neigh-
bourhood of 0 € R such that S = {tv € X|t € V}. Then we see that:
3T € L(X,Y)| (1) is true for f through S, VS € S ;) &

3T € L(X,Y)| }i_%f($°+t”) = Vet 5. 10 0, weX, pfl=1e

0f(zo,.) =T € L(X,Y). So, f€(1,1)5(X,Y) & f€G,(X,Y).

b) If § € §(x,x) then S is an open neighbourhood of 0, thus:
fe(X,X)z(X,Y) & 3T € L(X,Y)| (1) is true for f through S, VS open
neighbourhood of 0 & f € F,,,(X,Y).

c) If f € Fpy (X,Y) then (1) is satisfied for f with T = f'(zp) € L(X,Y),
through S, V.S open neighbourhood of 0.

Since, for S € S, we have S C X and X is an open neighbourhood of 0,
by Lemma 2.2, we see that (1) is satisfied for f with T = f'(x¢), through
S, VS €S. Then f € 8;,(X,Y).

To see that Sy, (X,Y) C Gy (X,Y) it is sufficient to show that

(m,n)} (X,Y) C G4(X,Y) Vm,n € Nx, m < n, taking in view the
inclusions mencioned after Definition 3.2.

We will show first that given S € Sy, IS € S(lm,n) such that S C S.

For § € S;11) we have 3v € X, [j|| = 1, 3V C R open neighbourhood of
0 in R such that S = {tv € X|t € V}.
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Let By =< {v} > be the one dimensional subspace of X generated by v, so
S C E;. We take then E,,, E, subspaces of X, dim E,, = m, dim E,, = n,
such that Ey C E,, C E, C X and define v : E,, — E, as thp inclusion
(which is C'-embedding) and set S = y(E;,) = E,. Then S C S and
S e S(lm - Now if f € (m, n)L,(X,Y) we have that (1) is fullfilled for
f, for some T € L(X,Y), VS € S(Im'n}. In particular, by Lemma 2.2,
(1) is fulfilled also through S, VS € S;;). Then f € G, (X,Y) and
T= af(wf)s )

O

In Proposition 4.5 of the next section we will relate Gateaux-differentiability
with some “vias” whose class of embedded submanifolds is S(; ;) and we
will relate Fréchet-differentiability with some “vias” whose class of embed-
ded submanifolds is S x x). We show also there that the class of embedded
submanifolds §(; x) will give Fréchet-differentiability too.

Let us do now the Hadamard-differentiability characterization:

Theorem 3.1. f € H,(X,Y) < f satisfies (0)4, and f € (1, X)L (X,Y).
Proof. There is no loss of generality in considering z¢ = 0 and f(z) = 0.
a) Suppose f € (1, X)L (X,Y) with (O);, satisfied by f and
i ¢ H.T:g(X: Y)

Now, f & Hyo(X,Y) = VT € L(X,Y), Jve X, 3eo > 0] V5 >0,

Jts e R, 0< |t5| <4, dls € X, 0<||l5]| <0 such that we have

@) |1f (tsv + taia) — Tl 2

Y Its]

For T =50.%) df (0), take v € X and gy > 0 as the ones given by (2).

We can construct sequences {4; }ien, {ts, }ien and {ls, }ien, ts,,ls;, given by

(2) where 6 = §;, that obey 0 < §;41 < —zi < é’-

Now, by Proposition 3.1 (¢), f is Gateaux differentiable at 0 and, conse-
quently, there are at most finitely many indexes ¢ for which 5, = 0.

From these sequences we can choose subsequences {d;; }jen and {fgij }ien
such that all td.-j have same sign, say, all of them are positive, and l,sij # 0.
Rename these subsequences and call them simply {¢,}nen, {0n}nen and

(a}acn. Cleazly, {6a} 1 0, {t} | 0 with tny1 < =, and {ls} — 0 as

2 1
n — 00.
”f(tnzn)n > €0
[ltalnll  — [lla]
a contradiction with the fact that f obeys (O)o.

h; —h;
Define h; = tjv +t;l; and vy = LJ—JH) for all 7 € N.
ti —tjin

Observe that v # 0 since v = 0 implies — 00 as 1. — 00,
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Let {2;};en~ be a sequence such that 0< 2; <tj_y—t;forall j € N*.

til; —tial
Nowvj_v.l_wa‘nd
'_tjl

18t = tiabiall - _tillGll Illj—;|‘| < 1G]] + 21l — 0

b —tial Tt g _ 4
ti-1
as j — oo, ie, v;—vasj— oo
= ti—1 t—1;
Construct the polygonal 5(t) = ﬁl—ﬂ—hj+1 + j+1 h;

j

for tit1 <t < tj, J€ Nand 4(t) =tv for t <0.

(t) _ = titinllin — ) + 45l — tiali)
t(tj 155 tj+1)

Since —=

(tti1) (liaall + 110510 &5 CI1E1+ Ili:+1l|)

1
ts '}
()

as j — oo and we have that lu‘gl+
t—
Now, to avoid corners at §(t;) = h; for j € N* we “smooth” the polygonal

F(t), i.e., we riplac: ¥ by v oftclais C"1 such that v(t;) = (t;) for all j € N.
Let 4;(t) = —2——hjp1+ —2L 2 hy;
t—t;— 2
"fj(t) = ﬁ’j(t) + (t - tj) (——i—-ﬁl) (UJ'.H = Uj) for all t € R and take
J
~(t) = v;(t) tE [t + 2]
F(t) otherwise.

H%l—vn <

4L 1+ 14all) — 0

3 _
t

We have e St )
—t -2 .
’)f’(i) iy { vj + ( :j j) ( ZJ ) (‘U'3+1 — v_,) ifte [tj,tj + Zj]
=1

¥ (t) otherwise.
Now, it is easy to verify that +/(t;) = t]j[;l 7Y () = vj41 and ¥ (t; + z5) =
—tj

. lir-il- v (t) = v;, whatever the choice of {z;};jen- is
T rey z_.'.-
Consequenlty, v is C' on (0,t,).

Observe that )
- t— ij — Zj
(&) =B < =t | ———) s —vill < |t =15] [loj41 — vl

g
for all t € [t;,t; + 2;] and ||y(t) — 4(t)|| = 0 for all t € (z; + t;,¢;—1]. We
also have
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Iy - 7@l < 152y BB 25 ) < 2l - v

j j

forallt € (tj,tj-}-z}']-—{tj-l} and H’}”(t)—ﬁ"(ﬁ)” =0forallt e (tj+zj,tjh1).

In this way, we have ||v(t) —F(#)|| < |t — ;] [lvj+1 — ]| — 0 on [¢;,¢; + 2]

and [|7'(t) = ¥ (#)|| < 2llvj41 —vsll — 0 on [t t; + 2] — {tj,t;-1}

since |[vj41 —vj|| = 0 as j — oo.

So, we conclude that ||y(t) — ¥(t)|| — 0 as t — 07, ie., y(t) — 0 as

t—-0+ancl||"/ — & (@#)|| = 0 on (0,t1) — {t;|7 € N}. Now, ¥(t) = v;
n (t;,t;—1) and v; — v which implies that 4'(t) — v as t — 0 through

0.6 {1 € NT.

Since v is C! on (0,¢) we have lim +/(t) = v

t—0+
teR

Note that y(0) = 0, lim v(t) =~(0) = hm+ ¥(t)-
We also have hm ol (f) =y = 11111 ¥ (t )

Now, 7/(0) = v, since lir{1]1 ‘Y(t) 7 7(0) = v and
t—0— A
i YO =20 _ L v® -5 L)
t—0F t t—0+ t t—0t+ 1
The latter equality is due to the fact that t].l]gl % =v and,

Hl;—”’ < g1 = vyl > 0 as j = oo.

Thus, we have obtained 4/(0) = v and 7 is C! on (—o0, t).

Observe that if we were obliged to choose negative ¢; to form the initial
sequence then we would have constructed, similarly, v : (;,00) — X.

Let X = ({v}) ® W and write z = z;v + w,w € W, the decomposition of
x. Define 7; : X — R by m1(z) = 1.

Since /(t) — v as t — 0 we have Js1,82 € R, 81 < 0 < s such that

(v (¢) > —;— Vt € (s1,82). Now, for all ¢1,t2 € (s1,82),t2 > t; we have

#1(1(t2) — 7(t1)) = F1r(ta) — Rry(ta) = f (f1y) (B)dt =

t

ta to il
:/ 19 (t)dt > f (%) dt = (t2 : t‘) >0
i t1

and, consequently, y(¢2) # v(t1), that is, v is injective on (si, s2).
Let L € N be such that t; < s;. Clearly v : [-1,#1] — X is a continuous
bijection over its image.
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To prove that 4! : y([—1,tz]) — [~1,%1] is continuous just observe that
all closed set F' C [~1,%1] is compact and that its inverse image by (y~1),
i.e., y(F) is also a closed set, since it is the continuous image of a compact
set.

So, we have obtained 7 : (—1,¢,) — X, a C'-embedding such that (¢;) =
h; for all j > L. Then § = ~((-1,t1)) € S(il’x}. Since f is S(II‘X)-
differentiable at 0,(1) is valid for f through S. Now, {hj|j > L} C S
and hj — 0 as j — 00, so,

0= lim {0 = T(hs) _

oo Ryl
im J [£ 0+ t3) - t:'T(‘U)] 1 TW) } _
Jo tj e+ 5l o+l
Thus, lim fiyetd tjij) — 4T = 0, a contradiction with (2).
Jj—oo 7]

Thus f € Ho(X,Y).

b) Suppose f € Hy(X,Y) and let T = f(0).

Let S =~(V) € S(ll,x) and v = +/(0) # 0. Define [(t) = @ — v so that
¥(t) = tv + t(t).

Now, tll_I:% '@ =4/(0) = v and we have gj_x.% I(t) = 0. So,

fB)=T(h) _ . F) - T((®)
lim ————= = lim -
[T = @l
. fv+ () — T () —tT((2)) t B
e r. il + 101
 [fto+ @) - tTw)  t t _
i : T T T ) =

due to the existence of a neighbourhood of 0 € R for which 1/|jv + I(¢)]|
is limited, as a consequence of v # 0 and I(t) — 0 as ¢ — 0, and also

b e ks thin T(I(E)) = 0ana L0 THY) —H0)

t
f € Hy(X,Y),
ast — 0. .
So we proved that f € (1, X)§(X,Y) with Sax) f1(0) =H f'(0) and
since f € Hp(X,Y'), we have that f satisfies (O)g. O

— 0, by virtue of

Now we present some results that lead us to conclude that
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(n, X)L, (X,Y) = (I,X)éo (X,Y) ¥n € Ny, and then, by the previous the-
orem, this set, together with property (O),,, will characterize Hadamard-
differentiability.

Theorem 3.2. For m,n € Nx, m < n, we have (n,X)} (X,Y) C
(m, X)L, (X,Y).

Proof. LetSeS X),sonswnttenasS—'y(V),7:VCR’”—>X

C'-embedding, V open neighbourhood of 0 in R™, ~(0) = 0. Let M =
~/(0)(R™) the tangent space of S at 0 and write X = M @ W (this is
possible by Hahn-Banach Theorem, since dim M = m < o0). SoVr € X, 3!
(r1,22) EM XW |z =21+ x9. Let mi(z) =24, i =1, 2

Define ¢ : U € X — X, where U = +/(0)(V) + W by ¢(z) = v(T'zy) + zo,
where I' = [v/(0)]"! € L(M,R™). Now ¢ is of class C* on U in Fréchet
sense, since it is a composition of functions of this kind. Moreover

¢ (z) = 4/(Tz1)oT omy + w2, thus ¢'(0) =+ (0)oTom +me = m + 7o = I,
the identity on X.

Inverse Function Theorem, for Banach spaces, guaranties the existence of
U c U, 0 € U open set of X such that ¢ : U — ¢(U) is a C'-diffeo-
morphism. Now, ¢(U N M) = ¢(y(0)V) = 1(T(y'(0)V)) =+(V) = § C
#(U); and if N D M is a subspace of X, dim N = n, we have (UNN) D S.
Letting V =T(UNM) we have 0 € V. C V Cc R™ and 7(V) = ¢(UNM) C
(U N N).

The set S = ¢(UNN) € 5(1'1‘)() since UNN is an openset of N, 0 € UNN
and ¢|,y s a C'-embedding.

So, if f € (n, X)L (X,Y) then (1) is true for f through S and, consequently,
(1) is true through ~( V) C S. Now since ’y(V) is an open set in S =
v(V), by Lemma 2.2, (1) is valid through S, too. This means that f €
(m, X)L, (X, Y). 0

The next definition will give us a new characterization for S-differentiabil-
ity. Let us fix § C P(X) one of the classes of embedded manifolds given
in Definition 3.1.

Definition 3.3. We will call a set W C X an S-type union if and only if
W = |J Vi, where, for each S € S, V; is a neighbourhood of 0 in S.
Ses

Using this definition, S-differentiability at zo may be interpreted in the
following way:

Proposition 3.2. f € S;,(X,Y) with Sdf (z0) = T if and only if we have
(3) Ve >0, 3W C X, an S-type union | Vh e W,
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Ilf (o + k) — f(z0) — Th| < &l|h|l

Proof. Since the limit (1) through § € S means Ve > 0, 3V neighbourhood
of 0 in S such that (h € Vi, h # 0) = ||f(zo+ k) — f(zo) — T-h|| < &||h]],
the proof is immediate. O

Proposition 3.3. (a) The statements (i) and (ii) are equivalent

(i) If W C X is an S-type union then W is a neighbourhood of 0 in X.
(1) Szo(X,Y) = Fo(X,Y).
(b) If S2o(X,Y) # Fpo(X,Y') we can find functions f,g both in S,,(X,Y)
but not in Fy,(X,Y) such that f satisfies (O)g, and g doesn’t satisfy (O)y,.

Proof. To see that (i) = (it), let f € S;,,(X,Y). Then, Ve >0, IW C X
an S-type union such that (3) is fulfilled with 7 = Sdf(z9). Now, by
(i), W is a neighbourhood of 0 in X which implies that (1) is valid for
h—0, he X. Then f € F,,(X,Y).

To see now that (ii)== (i) and also (b), let us suppose that there is an
S-type union W C X which is not a neighbourhood of 0 in X. We can
choose a sequence {hn}nen, bn € X — W with h, — 0 when n — oo. Let
Y,Yn € Y be such that ||y|| =1, |lyn|| = ||hn]l, Vn € N, and let us define
the functions f,g: X — Y by f(zo + hn) = Yn, 9(xzo + hn) =y, Yn € N,
and f(z) = g(z) = 0 otherwise. We have f,g € S;,(X,Y) since f =g =10
on zp + W and then, for all ¢ > 0, W is an S-type union for which (3) is
valid with 7' = 0 for both f and g. Now we see that f satisfies (O),, and
g doesn’t satisfy (O), and both f and g are not Fréchet-differentiable at
zo (g is not even continuous at z). 0

The next two corollaries of Theorem 3.1 are, by their own, interesting
results of differential topology.

Corollary 3.1. Ifdim X < oo and W is an 5(11 x) type union then W is
a neigbourhood of 0 in X.

Proof. If W is an S(ll x) type union which is not a neighbourhood of 0 in
X, we can find f € (1, X);,(X,Y), f satisfies (O)z,, with f ¢ F,(X,Y)
(Proposition 3.3). But, by Theorem 3.1, we have f € H,,(X,Y ) and with
the fact that dim X < oo we have f € F,;(X,Y) (Proposition 2.1(c)), a
contradiction. O

Corollary 3.2. Given a sequence {hj};en, h; € R", hj — 0 as j — oo,
we can choose from {h;}jen a subsequence that is contained in the image
S of a C'-embedding curve, that is, contained in some S € S(ll‘n).

Proof. Tt is sufficient to give the proof for the case when {j € N|h; = 0} is
finite and we can suppose, taking a subsequence, that h; #0 Vj € N.
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If each and every S € S(ll‘n) contains only a finite number of points h; then
we can choose Vg, neighbourhood of 0 in S, such that Vs does not contain
any of the points of the sequence {h;};jen. Form W the union of all such
Vs, an 5(11‘11) type union. Thus we arrive at the following contradiction:
W N {h;j|j € N} =0,h; — 0, and, by corollary 3.1, W is a neighbourhood
of 0 in R™. So, there must exist at least one S, SN{h;|j € N} is inifnite. [

Theorem 3.3. For each n € Nx we have (n,X). (X,Y) =
(1, X)go (X, Y).

Proof. We already know that (n, X);, (X,Y) C (1,X);,(X,Y) (Theorem
3.2).

Let S € S(ln,X)’ so S = v(V), V neighbourhood of 0 in R™, v:V — X is

a Cl-embedding in Fréchet sense.

Thus, there is a bijective correspondence between embedded C! curves
through 0 in V' C R™ and embedded C' curves through 0 in S C X.
Since, by corollary 3.1, the intersection of an S(lltn)-t.ype union in R™ with
V' is a neighbourhood of 0 in R™, we have that an 8(11’ x)-type union in
X will contain a neighbourhood of 0 in S. This is so because < is an
homeomorphism from V on S.

Now let f € (1,X);,(X,Y). Then, for all € > 0, relation (3) is valid for f
with 1= Sill-"”c{f(xg) for some W, S(ll,x)-type union. Since W contains a

neighbourhood of 0 in S, we have that (1) is valid for f, through S. Thus
femX), (X,Y). O

As, by Proposition 3.3, if Sp((X,Y) # Fy,(X,Y) we have examples of
[ € 8:,(X,Y) that satisfies (O),, and g € §;,(X,Y’) which doens’t satisfy
(O)z,, with both f and g not F-differentiable at z; we could emphasize
the property (O),, in any S-differentiability by:

Definition 3.4. We will say that a function f € 8,,(X,Y) is strongly
S-differentiable at xo, and write f € S, (X,Y) if f satisfies (O)q,-

Let us note that if f € §;,(X,Y), and we take any S-type union W given
in (3), for any € > 0, then the inequality ||f(zo + h) — f(zo)|| < M]||h|| is
satisfied for h € W.

Proposition 3.3 says that if S, (X,Y) # F3,(X,Y), then

Fro(X,Y) € S0 (X,Y) € S (X, Y).

We could also say that F, (X,Y) = F,(X,Y) and H, (X,Y) =
H,,(X,Y) (Proposition 2.1(b)).

In this notation we have already proved:

Corollary 3.3. For each n € Nx we have (n,X)' (X,Y) = H,,(X,Y).

{0 s
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Corollary 3.4. Ifdim X < oo, for eachn € Nx we have (n, X)L (X,Y) =
(n, X)! (X,Y) = H,,(X,Y).
AL, 1)

Proof. If f € (n,X);, (X,Y) then f € (1,X)! (X,Y) (Theorem 3.2) and
then there is some W, 8(11 x)-type union, where condition (O)g, is valid if
we replace h € X by h € W. But since dim X < oo, W is a neighbourhood
of 0in X (Corollary 3.1), and then, for convenient r > 0, h € W with
[|A]] < r is the same as h € X with ||k|| < r; then f satisfies (O),,. Thus,
femX), (X,Y)=Hy,(X,Y). O
We want to show, as the last result of this section, that
(@) (L,X)L(X,Y) C (0n)e(X,Y) C (mym)ay(X,¥) C (1, 1y (X, Y)
Ym,n € Nx, m<n.
In the case dim X = n < oo we have already seen that

(I’X);.‘I](le) = Hyy (X, Y)= Fro(X,Y) = (n,n),(X,Y)

We will see that if m < n we have (n,n)z,(X,Y) € (m,m)z,(X,Y),
and if dim X = oo all inclusions in (4) are, actually, proper inclusions.

Proposition 3.4. (a) Let m,n € Nx, m < n, then we have
(NyN)g(X,Y) C (m,ym), (X,Y) and if m <n we have
(n,1)20(X,Y) # (M, m)g, (X, Y).

(b) If dim X = oo then (1, X); (X,Y) C (n,n)z(X,Y) VneN*.

Proof. Let f € (n,n)g(X,Y). If § € Synym) then S is an open neigh-
bourhood of 0 in an m-dimensional subspace of X. Let {vi,...,v,} be a
base for this subspace and let {vyy11,...,vn} be such that {vy,...,v,} is lin-
early independent and write S = ({v1,...,v,}) the subspace generated by
{v1,...,vn}. We have S C S and S € S(n,n)- S0 (1) holds for f through S

and, by Lemma 2.2, through $ too.

Thus f € (m,m)z,(X,Y).

Assume now m < n. Let A=R", AC X and ¢ : R®™ — A be an isomor-
phism.

Define v : R — R™ by 4(t) = (t,£2,¢%,...,t") and let ¢ : X — Y be such
that [lo(zo + @(v(t))ll = [l¢(+())ll, Vt € R, and ¢(z) = 0 otherwise.

For all subspace S C A C X such that dimS =m < nlet L =¢~(S) C
R™. Clearly, dim L = m < n and we can choose u = (uy, ..., u,) € R" — {0}
such that (u,v) = 0 for all v € L. Calling j the first integer such that
u; # 0, we write

' (t),u) = (ug+2tug+..4nt" lu,) = tj_l(juj+(j+1)uj+1t+...+nt“_jun)
and choose € > 0 such that the sign of (7/(t),u) is that of u;#" ! on (—¢,¢).
Thus, 0 is the only solution for y(t) € L, t € (—,¢). This implies that
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there exists Uz, neighbourhood of 0 in L such that Uy N «y(R) = {0}
and, consequently, U = ¢(Ur) is a neighbourhood of 0 in S such that
U No(y(R)) = {0}. Taking T =0 € L(X,Y), since ¢ =0 on U, (1) is ful-
filled for ¢ through S. Now, since for all subspace S C X with dimS =m
we have dim(S N A) < m, we conclude that ¢ € (m,m)g,(X,Y), with
Stmm) dip(z0) = 0.

Now, if ¢ € (n,n)4(X,Y), by Proposition 3.1 (c), we would have

Sm dip(zg) =Stmm dip(zg) = 0. But (1) is not true for ¢ with T = 0
through S = A € §(, ), since ¢(7(R)) C A. Then ¢ ¢ (n,n)z(X,Y).

(b) For n € Nx, we have Spny = Sl € Stux) and then
(n, X)L, (X,Y) C (n,n)(X,Y) but (n,X);,(X,Y) = (1,X);(X.Y)
(Theorem 3.3).

So, if dim X = oo, we will have (1, X). (X,Y) C (n,n)s(X,Y) Vn €
N*. 0

We observe that the function ¢ given in the proof of previous proposition
satisfies conditions (O)g,, since [|p(zo + d(v(1))|| = ||@(v(?))]| for t € R
and @(z) = 0 otherwise. We could give g € (m,m)z, (X Y) with g ¢
(n,n)Irl (X,Y) such that g doesn’t satisty (O),, simply putting ||g(zo +

(7))l =1Vt €R and g(z) =0 otherwise, for example. Then we see
that ifm<n, (n,n) (X Y) € (m,m) (X,Y) and also

(n,m)2e (X, Y) — (n n) G(X Y) & (m, m)m(X,Y) — (m,m) 0(X,Y).

4. The concept of “vias” and “via-differentiability”

We will extend, now, the ideas of previous section, by taking more gen-
eral classes of embedded submanifolds of X, not restricted only to finite
dimensions neither only to Fréchet-differentiability in the C'!' case. These
classes will appear through the concept of “vias of Banach-space”. Each
via, let us call one by , for example, will generate a class "Sx of embedded
submanifolds of X, or simply Sy, when X is fixed, and a class 7, (X,Y)
of functions f : U € X — Y, U neighbourhood of xy, which we will call
the class of w-differentiable functions at g, exactly as in Definition 3.2, for
S = Sr. In this case, Sz, (X,Y) = m;,(X,Y). The classes of embedded
submanifolds of the previous section (Definition 3.1) will be the classes
determinated by some particular “vias”.

We begin presenting a way of comparing Banach spaces. Let A and B be
Banach spaces.

Definition 4.1. i) (Transport from A into B). A linear continuous map-
ping ¢ : A — B is a transport from A into B if and only if ¢ is injective
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and (A) is a closed set in B. Whenever 1 is a transport we may also say
that A is transported into B by 1.

The Open Mapping Theorem guaranties that 1 is an isomorphism, i.e.,
linear homeomorphism, betweem the Banach spaces A and ¢(A) C B. Ob-
serve. that the composstwn of transports is still a transport.

i) (< ) We will write A<B if and only if A can be transported into B,
i.e., there is:A— B, ¢ tmnspoﬂ

Since < 1s reflexive and transitive, = deﬁned by A=B & (A<B/\B<A) is
an equivalence relation. We will denote by [A] the equivalence class modulo

= of A. Note that § induces an order, <, in the set of classes defined by
[A] < [B] & A<B. It is easily checked that < is well defined and, it is an

order relation. For simplicity of notation we will write < instead of < for
Banach spaces too. The equivalence relation that will be used in this work
is contained in = and is given by:

i) A = B & A and B are isomorphic, i.e., there exists ¢ subjective
transport from A onto B.

Clearly, A = B = A=B. We observe that if A and B are Hilbert spaces

then we have A=B & A = B. We will denote [A] the equivalence class of
A modulo =. Observe that if A < B and 1 is a transport from A into B
then A = ¥(A).

Proposition 4.1. Let be given non zero vectors u,v € X. Then there is a
transport 1 : X — X such that 9(u) = v.

Proof. If v = tu for some t € R* then take 9(z) = tz. If u and v are linearly
independent then, using Hahn-Banach Theorem, it is possible to choose W
a closed subspace of X with co-dimension 2 such that X = ({u,v}) ® W.
Let g be a transport from ({u,v}) onto ({u,v}) such that g(u) = v, a
multiple of rotation for example. Now, take ¢» € L(X,Y’) given by

¥(z) = g(x1) + zo where z = zy + 29, 1 € ({u,v}) and 2o € W. O

Now we define what we will call a “via of Banach spaces”. This definition
is solely dependent on the equivalence classes of Banach spaces.

Definition 4.2. Let Ay, By,..., A, Bi,k € N*, be Banach spaces. The
k-tuple of ordered pairs (([A1], [Bi1]), ..., ([Ak), [Bk])) will be called a via of
Banach spaces with length k if and only if Ay < By < ... < Ay < By.

We will use the notation (Ay,Bi)_..._(Ak,Bi) for the via and will often
denote vias by greek letters. Let m be a via. Its length will be denoted by
I(m), its first element, [A;], by a(m) and its last element By by w(r).
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Definition 4.3. Given a Banach space A, we say that a via w is A-
admissible if and only if w(mw) < A.

Observe that, given vias my, ..., T, such that m; is a(miy1) admissible, 1 <
i <m—1, we can form the via m = w|_my_..._T,, in a natural way and we

will have I(r) = 3> I(m;).
=1

Now we are in position to define the concept of m-differentiability of a
function f: U — Y, at g € U,U open set in X for an X-admissible via 7.
In the same way of the previous section, we are interested in the existence
of a continuous linear operator 7' € L(X,Y), that we will call 7w-derivative
(m-differential) of f at zq, such that the relation (1) is fulfilled for f through
all sets S C X that are characterized by the via 7 as follows: If # = (A, B)
or 7 = 0_(A,B),o an A-admissible via, the set S is the transport into
X of the image of some embedding from A to B. These embeddings are
topological when 7 = (A, B) or of class C, in the o-differentiability sense,
when 7 = o_(A, B). These sets S are said to be of type =.

The notions of w-differentiability on w-type sets are made precise in the
following definition, where we used recursion over k = I().

Definition 4.4. Let f : U — Y,zg € U open set of X be given and 7 be
an X -admissible via with I(m) = k.

Ifk =1, m= (A, B), we will say that S C X 1is a set of type 7 (or a 7-type
set) if and only if statement (i) holds and that f is w-differentiable at xq if
and only if statement (i) holds.

(i) 3¢ : B— X transport 3y : U, C A — B topological embedding, 0 € U,
open set of A,v(0) =0, such that S = (v(U,)).

(i1) 3T € L(X,Y) such that relation (1) if fulfilled for f with T through S,
forall SC X, S a m-type set.

We will call the linear operator, T, a w-derivative of f at xg or, equivalently,
a w-differential of f at xq.

If k> 1 let m = 0_(A, B), l(c) = k — 1. By recursion we assume that all
sets S X of type A, for all Banach spaces X and all X -admissible vias
A with I(A) < k, are already defined. Analogously, for all Banach spaces
Y, we assume that the \-differentiability of functions g : U, C X = ¥at
& € Uy open set of X, are also already defined.

We will say that S C X is of type w (or a w-type set) if and only if relation
(iit) holds.

(iii) item (i) with the additional conditions that Yu € Uy, v is o-differen-
tiable at u and that there is a continuous function T : U, — L(A, B) such
that for all u € Uy, T'(u) is not only a o-derivative of v at u but also a
transport from A into B.
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Having defined T-type sets, we define w-differentiability of f at zq by (ii).

Observe that the definition of 7-type sets for a given via 7w does not de-
pend on the particular Banach spaces that form the via but only on their
equivalence classes. We will denote "Sx the class of 7-type sets in X, and
when X is fixed, we can write simply Sr.

Proposition 4.2 (Uniqueness). Under the same notation as in Defi-
nition 4.4, if f is w-differentiable at xo, the operator T that appears in
relation (ii) is unique.

Proof. Consequence of the following facts:

Every continuous linear function f is w-differentiable at all points of its
domain whatever the X-admissible via  is, since T' = f is its n-differential.
Given a via, # = (A, B) or m = 0_(A, B), and a vector v € X, v # 0, the
straight line ({v}) is contained in a set S = 9(y(A)) for some transport
v € L(A,B) and 9 from B into X. Observe that « is o-differentiable
at u, Yu € A, and that ¢ is chosen, if necessary, as a composition of a
transport from B into X and another transport from X into X where we
use Proposition 4.1 to obtain ({v}) C S.

Letting T1, T, € L(X,Y) satisfy (1), given an arbitrary v € X, v # 0, take
a m-type set S such that ({v}) C S. Then, by Lemma 2.2, we have, for
y=4.2

f(zo +h) — f(zo) — Ti(h) f(zo +h) — f(=zo) = Ti(h)

lim = lim =1,
= ih b ]
e({vh) hes
Now, h — 0, h € ({v}) means h = tv,t € R,t — 0 which implies T} (v) =
Tg(’u) and T} = Tz. O

We will denote the w-derivative of f at z¢ by ™ f'(zo) or "df (zo).

Definition 4.5. Let m be an X -admissible via. The class of m-differentiable
functions at x is the set

Tzo(X,Y) = {f : U — Y|zo € U open set of X and f is w-differentiable at z}.
Proposition 4.3 (Operation rules). With pointwise addition and scalar
multiplication, 75, (X,Y) is a real vector space and the operator D,, defined
by

Dy : T3 (X, Y) — L(X,Y), Dyo(f) =" f'(z0), is linear.

Proposition 4.4 (Leibniz rule.). Let Y be a Banach Algebra and define
the product of f and g in 7z, (X,Y') as the pointwise product. If f or g is
continuous at zo then fg € m,,(X,Y) and

"d(fg)(xo) =" df (x0)g(z0) + f(z0)"dg(z0) € L(X,Y).
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The proof of both propositions above follow the steps of the proofs of analo-
gous propositions for Fréchet-differentiable functions, using the uniqueness
of via derivate and Lemmas 2.1 and 2.2 for calculating limits through sets.
For simplicity of notation when dim A = m < oo, that is A = R™, we will
denote the via (A, B) by (m,B). If B = R", m < n, we will simply write
(m,n).

Taking m = (m,n) an X-admissible via (that is, m,n € Nx, m < n), we
see that S, ) is exactly the same given in Definition 3.1. We can say the
same for vias (m, X) and (X, X), that is, S;n x) and S(x x) are the same
as the ones given in Definition 3.1.

Then the sets (m,n)z,(X,Y), (m,X)z(X,Y) and (X, X),,(X,Y) each
one seen as the set of m-differentiable functions at zp for # = (m,n), =™ =
(m, X) and © = (X, X), respectively, are the same sets given in Definition
3.2.

To see that the other classes S given in Definition 3.1 are also the type
sets of particular “vias” and to identify the corresponding vias, let us first
show:

Proposition 4.5. For every Banach space Y the following are valid:

i) The vias Uy = (1,1)_... (1,1) with l(Uy) = k,k € N*, are all equivalent
in the sense that (Uy)zy(X,Y) = Ggo(X,Y) with Uk f'(z0) = 6 f(z0,.)

for all f € (U)o (X,Y). Moreover, myy(X,Y) C Gyo(X,Y) for all X-
admissible via © and ™ f'(xo) = 8f (zo,.) for all f € m4,(X,Y).

it) If f € (71)ae(X,Y) N (72)20(X,Y) where w1 and 7y are X -admissible
vias, then ™ f'(zo) ="* f'(x¢).

ii1) The vias (X,X), 0_(X,X), where o is any X-admissible via, and
(1, X) are all equivalent, in the sense that (1,X),(X,Y) =
J_(X,X)mu(X,Y) = (X,X)xG(X,Y) = qu(XvY): with (X’X)fr(:rDJ =
f'(zo) for all f € (X,X)z(X,Y). Moreover Fp( (X,Y) C 74 (X,Y) for

all X -admissible via 7.

Proof. i) Yk € N*, § C X is a set of type Uy if and only if S is an
open neighbourhood of 0 in some one-dimensional subspace of X, that is,
Su. = 8a,1)-

Then, from Proposition 3.1(a) we have (Ug)g(X,Y) = (1,1),,(X,Y) =
G2, (X,Y). From uniqueness of U f/(zo) we have Uk f/(xq) = 6 f(xo, .)-
Given m an X-admissible via and v € X, v # 0, choose a m-type set S C X
such that ({v}) C S. Let f € o (X,Y) and T =" f’(zp). Then

L f@ot ) = (@) =T(h) _ . f@o+te) = flzo) = ¢T() _

hes IRl 8 L

by Lemma 2.2, and so, f € G, (X,Y) and T =" f'(z¢) = 6f(zo,.).
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This completes the proof of (i) and it also proves (ii) since, under the
hypothesis of item (ii), we have ™ f'(zg) =™ f'(z0) = 0 f(xo,.)-

iii) Since S(x,x) = Sy_(x,x) is the class of all open neighbourhood of 0
in X, we have o_(X, X);(X,Y) = (X, X)2,(X,Y) and from Proposition
3.1 (b) we have (X, X)z,(X,Y) = Fyo(X,Y), and XX f'(z0) = f'(z0)
Vf € (X, X)g(X,Y).

Now, given an X-admissible via 7, using § = & in the proof of Proposition
3.1 (c), we conclude that Fy,,(X,Y) C 75, (X,Y).

Let us prove now that (1, X),, (X,Y) = F5 (X, Y).

We already have F, (X,Y) C (1, X))z (X,Y).

Suppose that there is a function f € (1,X)g,(X,Y) which is not in
F,,(X,Y). Since f is not Fréchet differentiable at x; we have VT € L(X,Y)
Jep > 0 such that V6 > 0, 3hs; € X, 0 < ||hs]| < § with

(5} ”f(xo ch hﬁ) ”hfaﬁxﬁ) T(hé)” > €

and, in particular, this statement is true for T =(1X) f/(z).

Construct {d;}ien a sequence of positive real numbers, §; | 0, and a se-
quence of points {h;}ien, hi = hs, in such a way that (5) is valid for all
i € Nand 0 < ;41 < |hs,;||/2 < 8;/2. This guaranties the monotonicity of
the sequence {h;}ien, ie. ||kl 1 0.

Now observe that there can not be any vector v € X, v # 0, such that
the line ({v}) contains infinitely many points h;, since the subspace ({v})
is of type (1,X) and, being f € (1,X)4,(X,Y), (1) is valid for f through
S = ({v}) for all v € X,v # 0. Take u € X, u # 0 and W C X such that
X = ({u}) ®W. Let

Xy={tutwweW,tcRi}and X_ = {tut+wlweW, teR_}.

Now, infinitely many h; must belong to either X, or X_. Without loss of
generality suppose they are in X and rename them h; so that we write
the sequence {h;}jen C X;.

Given z,y € X. Let us denote the set {pz + (1 — p)ylp € [0,1]} by [z,y]
and the open ball centered at = with radius r by B(zx,r).

Choose a subsequence {h;, }ren C {h;};en such that j; = 1 and, for all

k-1
k€N, g s such that O ¢ [hy,., ] and B, di,) (U (i hal) =

(. This can be done because ({h;, }) contains at most finitely many point
h; and, by construction, é; | 0 and | h;|| | 0. For simplicity of notation, call
{hji }xen simply {hAp }men.

Now we can construct a polygonal v : (—1,1) — X which image is the set

(=, 0]U( U [Ams homsa]) by writting (t) = tu for —1 < ¢ <0, and
m=1
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for all m € N*, ’r(t% = Pm(t)hm+1 + (1 = P (t))

.  m . —

werepm(t)-—}__ T Orm_l_l_.t_};-
m m+1

Observe that, by construction, (—u,0] C X_; [hm+1,hm] C X, for all
m € N* and, for all m,l € N*, m # I, [hmy1, hm] N [his1, hi) C {hms1, hm}s
so that + has no self crossings.
Clearly, ¥(t) — 0 as t — 0. Now, v is an homeomorphism over its image
and, as we can take 1 : X — X the identity map, S = v((—1,1)) is a set
of type (1, X).
On the other hand, (1) can not be true for f through S since {h,,} C S
and (5) holds for h,,. This is a contradiction with f € (1,X)., (X, X).
So, f is Fréchet differentiable at zp and we have (1,X),,(X,Y) =
Foo (X, Y). .
D i

Taking in view Proposition 4.5 (iii), we see that (A,A)_(A,B) and
o_(A,A)_(A, B), with B < X, have the same class of embedded manifolds,
precisely:

S(a,4)_(A.B) = So_(4,4)_(AB) = S{ap) = {¥(1(U;)) C X|¢ is a transport
from B into X,v: U, C A — B, C'—embedding in Fréchet sense, U, open
neighbourhood of 0 in A, v(0) = 0}.

Then, in particular, we have that the classes S(lm,ﬂ) and S(lm,X) given in
Definition 3.1 (with m,n € Nx m < n), are the classes for the vias
(m,m)_(m,n) and (m,m)_(m, X) respectively.

Then the classes of functions (m,n)} (X,Y) and (m, X)} (X,Y) given in
Definition 3.2 are the classes of functions (m, m)_(m, n)-differentiable at zq
and (m, m)_(m, X)-differentiable at z, respectively, that is:

(m,n)L,(X,Y) = (m,m)_(m,n)z(X,Y) and
(m,X)iu(X, Y) = (m,m)_(m, X).(X,Y).

Now we see that all classes of differentiabilities of previous section are
included and generalized with the concept of via-differentiability.

The notions of type unions and strong-differentiability are also generalized
for vias following the same way of what was done in previous section.

We point out all this here.

Let 7, an X-admissible via, be given:

Definition 4.6. We will call W C X a 7-type union if and only if W is
an S-type union (see Definition 3.3) for § = S;.
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Proposition 4.6. f € m,,(X,Y) with "df (zo) = T € L(X,Y) if only if
(8) is valid for f with S = Sy, that is,
Ve > 0, 3W C X a w-type union |Vh € W, ||f(zo+h)-f(zo)—Th|| < €|h||.

Proof. Same proof of Proposition 3.2. O

Proposition 4.7. For every Banach space Y we have:

(a) the statements (i) and (ii) are equivalent:

(1) If W C X is a w-type union, then W is a neighbourhood of 0 in X.
(i) Trxn(X! Y)= FIO(X'!Y)‘
(b) If mae(X,Y) # Fyo(X,Y) we can find functions f, g in 7 (X,Y) which
are not in F,,(X,Y) such that f satisfies (O)s, and g doesn't satisfy (O)z,.

Proof. Same proof of Proposition 3.3, using S = &;, S,(X,Y) =
m2o(X,Y), Sdf (z0) =" df (z0). O

Definition 4.7. We will say that a function f € 7, (X,Y) is strongly
n-differentiable at xo, and write f € 7, (X,Y), if f satifies (O)z,

By Proposition 4.7 (b), if 75,(X,Y) # F(X,Y), then

Fy, (X,Y) (#_ Ezg(Xi Y) E ﬂzu(xs Y).

Also, for f € m,,(X,Y), if we take any n-type union W given in (3), for

any € > 0, then the inequality ||f(zo + h) — f(xo)|| < M||h|| is satisfied for

heW.

For what we saw in previous section, we know that

(n,n)-(n,X) D(X, Y)=H,(X,Y), Vne€ Nx.

Let us see now some general properties of w-differentiability.

Observe that there is a natural bijection between 7, (X,Y) and ?Txl (X,Y),

Zp and z; in X, since for every f € :rrzo(X Y') we can define f:U—>Y by
f(z — 2o + 1) = f(z), which yields f € 7, (X,Y).

This observation was made in order to make clear that the definitions that

follow will not depend on the particular zy € X, so that we can take it to

be 0 € X.

In order to compare vias, let 7(X,Y) = m(X,Y).

Definition 4.8. i) Given m, m, two X-admissible vias, we will say that
w1 is weaker than wa, equivalently, wo is stronger than my, and write my <y
if and only if m(X,Y) D ma(X,Y) for each Banach space Y.

As the relation < is reflexive and transitive we can obtain an equivalence
relation over the vias defining

i) m =my & m(X,Y) = m(X,Y) for each Banach space Y.

As previously done, < induces an order relation < in the set of equivalence
classes of vias. We denote the equivalence class of m by [x] and we will
also use < instead of < for vias.
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By Proposition 3.4 we have: (m,m) < (n,n) < (1,1)_(1,X) Vm,n €
Nx, m<n.

If dim X = n < oo we have (n,n) = (
If dim X = oo we have (1,1) < (2,2
VYn € N*.

By Proposition 4.5 we have: (1,1) <7 < (X, X) Vr, X-admissible via.
Let my,m2 be X-admissible vias. The following results are immediate:

Proposition 4.8. (a) If Sy, C Sy, then m < 7.

(b) If for each Se Sr, we have 3S € Sy, with ScC S, then m < mo.

(c) If for each S € Sy, we have 3 S € Sy, and S € Sy, with Sc 8nS,
then m < ms.

Proof. Given a Banach space Y, take f € mo(X,Y). Then (1) is valid for
f with T ="2 df (0), through S, VS € Sg,.

(a) If Sy, C Sy, given S € Sy, (1) is valid for f through 3, since S € S,,.
Then f € m(X,Y).

(b) Given S € 8y, take S € S, with § ¢ S. Since (1) is valid for f
through S, by Lemma 2.2, (1) is valid for f through S. Then f € m (X Y)
(c) Given 8e Sy, take S € Sp,, g€ Sy, with ScS8nS. Since Sc §
and S € Sr, means that S is an open neighbourhood of 0 in S, and since
(1) is valid for f through S, by Lemma 2.2, we have both, (1) is valid for
f through S and also through S. Then f € m(X,Y).

,1)-(1,X)

1,1
) < ... < (nyn) < ... < (1,1)_(1,X)

O

Theorem 4.1. If A < B < X then

(i) (A, A) =o0_(A, A) for all A-admissible via o.
(i) (A, B) < (B, B)

(#3) If X is a Hilbert space then (A, A) < (B, B).

Proof. (i) Since S, _(a4,4) = S(a,4) = {V C E C X|E subspace of X iso-
morphic to A, V open neighbourhood of 0 in E}, we have o_(A, A)(X,Y) =
(A, A)(X,Y) for each Banach space Y.

(ii) If S € S(a,p) then 3 E subspace of X isomorphic to B and S open

neighbourhood of 0 in E, that is, S € S(p p), such that S c s. By
Proposition 4.8 (b) we have (A, B) < (B, B).

(iii) The finite dimensional case is already proved in Proposition 3.4.

If dim X = oo, write X = [5(T"), for some infinite I'. There is a family
{vs}ser of linearly independent vectors of X that form a Bessel base for X
and B < X & B = Ilp(T") for some I' C I'.

If S is an (A, A) type set, S is an open set of a subspace of X that is
isomorphic to A. Now, by its turn, a subspace of X isomorphic to A is
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contained in a subspace Sof X 1som0rph1c to B, when A < B, since we
can write A = I3(T), B = Ip(l') with T ¢ I' ¢ T and we can complete I
with linear independent vectors to form I'. Since S € S(,p) and Scs,
by Proposition 4.8 (b) we have (A, A) < (B, B).

O
Corollary 4.1. Let o be an X admissible via. Then o < ( u(a w(a )
Proof. o is either (A,B) or A (A,B) with B < X, and ( ,w(o)) =
(B, B).

Since Sx_(4,B) C S(a,B), by Proposition 4.8 a) we have A (A, B) < (4, B)
and the proof follows by Theorem 4.1 ii). ]

Theorem 4.2. If R™ < R" < A < X, then (m,m)_(m,A) <
(n,n)-(n,A) < (4,4).

Proof. If X = A the proof is the same given in Theorem 3.2. In the general
case, to see that (n,n)_(n,A4)(X,Y) C (m,m)-(m,A)(X,Y) we use the
same arguments of Theorem 3.2 using A instead of X in the following way:
IfSe S(m,m)_(m,a) then S is written as S = P(y(V)), ¥ a transport from
Ato X,and v: V CR™ — A as in the proof of Theorem 3.2. Thus we
put M = 7'(0)]1{’:‘ C A, A= M & W and everything goes the same way of
there to obtain V' C V, open set in V, and S; an (n,n)_(n, A) type set in
A such that (V) C .

Then S = ¥ (y(V)) € § = v(S;) which is an (n,n)_(n, A) type set in X,
that is , S € S .n)_ (n,4)- Since S is an open nelghbourhood of 0in S, by
Proposition 4.8 (c), we have (m,m)_(m, A) < (n,n)_(n, A).

Now, note that if § € S(m,m)_(m,A)> We have § = ¢(y(V)) as before and
then § C S for some open neighbourhood of 0 in E = 1(A), that is, for
some S € S4,4)-

Thus, by proposition 4.8 (b), we have (m,m)_(m, A) < (4, A). O
Theorem 4.3. IfR® < A < X then (n,n)_(n,A) = (1,1)_(1, A).

Proof. The proof follows the steps of the proof of Theorem 3.3 using Corol-
lary 3.1 and the fact that if § € S, ) (n,4), S = ¥(7(V)), ¥ a transport
from A to X, V open neighbourhood 0 in R", v:V — A C'-embedding

in Fréchet-sense; then, in particular, ¢ o 4 is an homeomorsphim from V
on S. O

Corollary 4.2. For alln € Nx we have (n,n) = (1,1)_(1,n).
Proof. Taking A = R™ in Theorem 4.3 we have (n,n)_(n,n) = (1,1)-(1,n).
Since S(p.n)_(nn) = S(ln = S(n,n) We have (n,n)_(n, n) (n,n). O

)
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Theorem 4.4. If o is a via such that w(oc) = R™ < X, then we have
o= (m,m).

Proof. The via o is written in one of the two forms, either o = (k,m) or
o= A_(k,m), for k =1,2,...m. Now we have (1,1)_(1,m) = (k,k)_(k,m)
(Theorem 4.3). Since S{k.k)_ (kym) = S(lk,m) = SA-{k,m] C ‘S(k,m) we have

(k,k)-(k,m) < A_(k,m) < (k,m) (Proposition 4.8(a)). Also we have
(k,m) < (m,m) (Theorem 4.1 (ii)) and (m,m) = (1,1)_(1,m) (Corollary
4.2). Then (1,1)_(1,m) < (k,k)—(k,m) < A_(k,m) < (k,m) < (m,m) <
(1,1)-(1,m), that is, these vias are all equivalent. O

Corollary 4.3. For X = R" there are exactly n different types of via-
differentiabilities.

Proof. By Proposition 3.4 we have (i # j) = (¢,1¢# (J,7) and the conclu-
sion follows from Theorem 4.4. O

Theorem 4.5. If 7 = o0 where w(c) = R™ < «(f), then m = (m,m)_0.

Proof. By induction on [(f) = k € Nx.

For #k =1, 6 = (A,B) and given a Banach space Y,

f € (m,m)_(A,B)(X,Y) means that (1) is fulfilled for f through S, for

all S = ¢(y(V)) where, among other things, v : V € A — B is (m,m)-

differentiable. But from Theorem 4.4, v is (m, m)-differentiable if and only

if y is o-differentiable.

So f € (m,m)_(A,B)(X,Y) < feo_(A,B)(X,Y) thus (m,m)_(A,B) =

o_(A,B).

Now, if k> 1, 8 = A_(A,B), and f € (m,m)_A_(A4, B)(X,Y ) means that

(1) is fulfilled for f through S, for all S = ¥(y(V)) where, among other

things, v : V C A — B is (m,m)_A differentiable.

But from induction hypothesis, since [(A\) = k — 1, we have that 7 is

(m,m)_A differentiable if and only if v is ¢_A differentiable.

So (m,m)_A_(A4,B)(X,Y) = 0_A_(A,B)(X,Y) and 0_0 = (m,m)_6.
O

Theorem 4.6. For every X-admissible via m and all o(7)-admissible via
A, the following “inequalities” are valid:

(i) Aow <7 ifl(7) is odd.

(i) m < A_m ifl(w) is even.

Proof. We will prove (i) and (ii) together using induction over k = l(7) €
Nx. If k =1,7 = (A, B), it is clear that if § C X is of type A_7 then it
is of 7-type since condition (iii) of Definition 4.4 implies its condition (i).
Thus, given a Banach space Y, if f € 7(X,Y) and S is of type A_7 then
relation (1) holds for f with 7" =" f’(0) through S, which implies that f €
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A_m(X,Y) and -7 f/(0) =" f'(0). So, for k =1, A_7(X,Y) D n(X,Y),
ie, A_m <.

For k > 1, assuming that (i) and (ii) are true for all o with I(o) < k, we
write r = o0_(A, B), l(oc) =k — 1.

Suppose k is even.

Let fe A_n(X,Y)=A_0-(4,B)(X,Y). Thus (1) is valid for f with

T =*7 f'(0), through S, for all S of type A_w. Since I(¢) is odd, from
induction hypothesis A_o < o, that is, o(4, B) C A_o(A, B) which implies
that o, (A,B) C A_ou(A,B) for all v € A. Now, ify: U, C A — B
satisfies condition (iii) of Definition 4,4, for the via o, it will also satisfy
this condition for the via A_o, with the same function I : U, — L(A, B)
where I'(u) = v/(u) =*-7 9/(u) is a transport from A into B for all u € U,,.
This means that all S of type o_(A, B) = 7 are of type A_o_(A,B) = A_7
and so, (1) will be true for f through every S of type m. Thus f € n(X,Y)
with 7 £/(0) =*-* £/(0). So 7 < A_m.

The argument for odd % is similar. O

Note that if m = (Ag, Bg)—...—(A1, By), by Theorem 4.6, we can write the
following comparison of vias:
(A2, B2)— (A1, B1) < (A4, By) — ... — (A1,B1) <
< (As, B3)- (A2, B2)- (Al,Bl)

R )

< (41, B1).

Now we present vias which strong-differentiabilities lie between Hadamard
and Fréchet ones.

Proposition 4.9. For n € Nx and o an R"-admissible via we have
(n,n)-(n,X) < o_(n,X) < (n,X).

PT'OOf. Since S(n,n.)_(ﬂ,X) — S{ﬂ,X) & Sa_(n,X) = ‘S{n,X)! the pl‘OOf follows
from Proposition 4.8 (a). O

Proposition 4.10. For k,m,n € Nx with k < m < n we have
(n,n)-(n, X) < (m,m)-(n, X) < (k, k)-(n, X) < (n,X) < (X, X).

Proof. For every via o with w(oc) = R™ we already know that
(n,n)-(n,X) < 0_(n,X) = (mym)_(n,X) < (n,X) (Proposition 4.9,
Theorem 4.4). Now, since if ¥ : V € R® — X is a Cl-embedding in
(m,m)_ sense then it is a C'-embedding in (k,k)_sense; we have that
Stmm)_(n,x) C S(k,k)—(n,x); and the proof follows from Proposition 4.8
(a). O

Since (n,n)—(n,X), in conjunction with condition (0),,, is Hadamard
differentiability, the proposition above shows that there are possibilities
for via differentiabilities between Hadamard and Fréchet differentiabilities.
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To end this section, let us define the set of all X-admissible vias,
= {n|m is an X — admissible via },

and let £ C x be an arbitrary non void subset of y.

Observe that, given a Banach space Y, we have 0 # L(X,Y) C

(X, X)(X,Y) € N n(X,Y). Now we can define a completion of x by
mefd

writing

x={[)r(X.Y) 0#QcCx},
Tell
i.e, an element of ¥ is the set {f : U C X — Y|0 € U open set, IQC x, f
is = differentiable at 0 for all # € Q}, and try to study this completion.
Some questions naturally appear. If € is a chain of vias, that is, {2 has the

property that for all # and o in Q either m < ¢ or & < m, then is it true that

there is an element A € y such that () 7(X,Y) = A(X,Y) ? Under what
weld
conditions on §2, X and Y we can solve the equation (] 7(X,Y) = A(X,Y)
mell
for some via A € x?

Remember that (1,1)(X, (2.2)(X,Y) D« D WG Y)S
D (L,1)_(1, X)(X,Y). Is ]S true that there is m an X- adrms‘;lble via such

that ) (n,n)(X,Y) = n(X,Y) or does the limit via () (n,n)(X,Y) lie
nel nelN
outside x7

Observe that for X such that I3(N) < X, r] n,n)(X,Y) in conjunction
neN
with (O)g is less than and not equal to (1,1)_(1,X)(X,Y) = Hp(X,Y).

This can be verified, similarly to what was done in Proposition 3.4, by
taking f: [o(N) - Y such that || f(¢(t))|| = ||¢(t)|| and f(z) = 0 otherwise
where ¢(t) = (t,12, ...) for ¢ E R, |t| < 1, and noting that for all
n € N*(mn) df(0) = 0 and (1) is not fulfilled for f, with T = 0, through
S = ¢((—1,1)) an (1,1)_(1, X) type set.

5. Applications

In the section we apply the concept of via differentiability in two different
contexts to obtain interesting results.

The first one, a consequence of Corollary 3.1 is a reciprocal statement of
the following well known elementary calculus result. Let f : R™ — R™ be
such that there exists x]i'nxlo f(z) = 1. Then for every embedded C'-curve

¢ : (—€€) — R™, such that ¢(0) = xp, we have limy_q f(c(t)) = . We
remark that we are assuming only embedded C'!-curves in the hypothesis
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of the reciprocal theorem, since by Corollary 3.1, every (1,1)_(1,n) type
union, translated from 0 to zg, contains an open neighbourhood of zg.
Now we apply this theory to linearize a discrete dynamical system in R"
around its fixed point where it is not Fréchet differentiable. We present
one situation where there is local conjugacy between the system and its
linearized form, that is, where a Hartman Grobman type theorem is valid;
and another situation with no local conjugacy though the derivative at the
fixed point is hyperbolic.

The first situation shows that there is the possibility of linearizing a non-
Fréchet differentiable system with the newly defined derivatives and still
have a good linear approximation on neighbourhoods of the fixed point.
Now we construct the dynamical system. Let 0 < a < b < land R C
R™ n > 2, be given by

R = {(t‘plt:’a'"ap{n—l)tn) € Rﬂll|t > 0} a < Pj < 2b — a, 1 < J <
(n — 1)}. Take the linear isomorphism g : R* — R, g(z1,...,z,) =
(azy,a’zs,...,a"z,) and define the homeomorphism f by f = g outside R
and '

Fp1t?, s pin—yt™) = ((b— 2)t, (b — 2)°p1t2, ..., (b — 2)"P(n-1)t") Where
z =max{|b—p;| |1 £j < (n—1)}. Note that for each A = (p1,...,p(n—1)) €
R(™=1) the curve Py : R — R", Pp(t) = (t,p1t2, sy P(n—1)t") is invariant
under both actions of g and f and that we can write R as the union of
the images of all curves Py, for positive ¢ and A in [a,2b — a]"~!. Since
f(Pa(t)) = Pa(at) when Pp(t) € R and f(Pa(t)) = Pa((b — 2)t) other-
wise, the inverse f~! is such that f~!(Pa(t)) = Pa(t/a) outside R and
f7U(PA(t)) = Pa(t/(b—2)) in R.

Clearly f is an homeomorphism and it is not Fréchet differentiable at 0,
since 0 is in the closure of R.

However, for every m dimensional subspace E of R™,m < n, we can find
an open neighbourhood V' C E of 0 in F which is disjoint of R as can be
seen in the proof of Proposition 3.4. Now f = g in V and (™™ f/(0) = ¢
which is attractive, thus hyperbolic.

The situations mentioned above correspond respectively to the cases b < 1
and b =1 as is shown as follows:

In case b < 1, f is attractive and the fundamental domain B — f(B), where
B is some closed ball in R™ centered at 0, is homeomorphic to B — g(B)
which is a fundamental domain for g. This permits us to construct a global
conjugation between the two systems. Finally, if b = 1, every point in the
set F = {(t,t%,...,t")|t > 0} is a fixed point of f and no conjugation with
g is possible since 0 is an accumulation point of F.
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