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Abstract. Solutions of variational problems under affine boundary
conditions can be viewed equivalently as solutions of an implicit dif-
ferential equation coupled with another equation that relates to quasi-
affinity on the quasiconvex envelope of the integrand. In this work
we derive conditions on an integrand and on its quasiconvex envelope
which are sufficient for existence of solutions of a related lower di-
mensional variational problem derived through a dimension reduction
process.

1. Introduction

Existence of solutions of the problem

(P ) inf

{∫
Ω
f(∇u(x)) dx, u ∈W 1,∞(Ω;Rd) u = uζ0 on ∂Ω

}
where Ω is an open bounded subset of RN and f : Rd×N → R, N, d ≥ 1
with uζ0 a given affine map, has been studied extensively by many authors.
We refer to [17] and [18] and the references therein.

As usual the case where N = 1 or d = 1 will be denoted by scalar and
the case where N, d > 1 by vectorial. We recall that in the scalar case
quasiconvexity and convexity are equivalent notions.
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If f is quasiconvex the problem (P ) trivially has uζ0 has a minimizer.
As derived in [17], when f fails to be quasiconvex, (P ) attains a solution if

and only if there exists ū ∈ uζ0 +W 1,∞
0 (Ω;Rd) such that

f(∇ū(x)) = Qf(∇ū(x)) a.e. x ∈ Ω (1.1)

and ∫
Ω
Qf(∇ū(x)) dx = Qf(ζ0)|Ω| (1.2)

where Qf is the quasiconvex envelope of f , namely

Qf = sup {g ≤ f : g quasiconvex } .

Equations (1.1) and (1.2) are of a different nature as pointed out for
instance in [14]. Equation (1.1) is what is called an implicit partial differ-
ential equation (see [18] for historical and bibliographical comments), while
(1.2) is more geometrical in nature since it relates to quasiaffinity on the
quasiconvex envelope of f .

Departing from sufficient conditions for (1.1) and (1.2) to hold (cf. [14])
we intend to derive conditions on f and on its quasiconvex envelope that
ensure existence of solutions of a related lower dimensional problem. The
energy density of this lower dimensional problem is determined by a dimen-
sion reduction process and relates to f through the following definition:

Definition 1.0.1. Let f : Rd×N → R be a Borel measurable function,
satisfying f(ζ) ≥ −C, ∀ζ ∈ Rd×N . Writing ζ = (ζα|ζN ), where ζα ∈
Rd×(N−1) and ζN ∈ Rd, we define f̄ : Rd×(N−1) → R by:

f̄(ζα) := inf
λ∈Rd
{f(ζα|λ)}.

Since we will deal both with f : Rd×N → R and with f̄ : Rd×(N−1) → R,
we will denote by CNf, QNf, RNf the convex, quasiconvex and rank one
convex envelopes of f and by CN−1f̄ , QN−1f̄ , RN−1f̄ the corresponding
envelopes of f̄ .

Our goal is to derive conditions on f and on the set

K := {ζ ∈ Rd×N : QNf(ζ) < f(ζ)},
that are sufficient to ensure existence of solutions of the problem:

(P̄ ) inf

{∫
w
f̄(∇v(xα)) dxα, v ∈ vζ0,α +W 1,∞

0 (w;Rd)
}
,

where
w ⊂ RN−1, ζ0,α ∈ K̄ := {ζα : QN−1f̄(ζα) < f̄(ζα)}
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and vζ0,α is a given affine map.

More precisely we want to derive conditions on f andK that are sufficient
to ensure that f̄ and K̄ satisfy the hypothesis of [14] (cf. Corollary 3.0.1)
which in turn ensure existence of solutions of (P̄ ).

The outline of the paper is as follows: In Section 2 we introduce the
notation used throughout the work; in Section 3 we recall the different
notions of convexity and some conditions on f and K that are sufficient for
(1.1) and (1.2) to hold. We also introduce in Section 3 the conditions on f
and K that will be sufficient to ensure existence of solutions of (P̄ ).

In Section 4 we review briefly the dimension reduction result of Le Dret
and Raoult in [22] and Section 5 is devoted to the statement and proof of our
results. Loosely speaking, our main result (cf. Section 5, Theorem 5.2.1 )
states that under appropriate hypothesis on f and K ( cf. Definition 3.0.4
iii) and Definition (3.0.6)), problem (P̄ ) attains solutions as long as the
quasiaffinity hypothesis on QNf along rank-one directions are transmitted
to QN−1f̄ . This holds to be true if ζα ∈ K̄ is such that

¯QNf(ζα) = QN−1f̄(ζα). (1.3)

Unfortunately (1.3) is not true in general and for that reason we will need
an extra condition (cf. Definition 3.0.5) in the statement of Theorem 5.2.1.

We also discuss some cases where it can be shown that (1.3) holds. One
such situation is the scalar case and this allows for a simpler statement
of our main theorem when d = 1 (cf. Theorem 5.2.2) since we can drop
condition (3.0.5).

Finally we discuss a few examples in Section 5.2.

2. Notation

In this section we introduce the notation used in this work.

Throughout the text N ≥ 2 and w ⊂ RN−1 will denote an open bounded
set with Lipschitz boundary. For ε > 0 we set Ωε = w×]− ε

2 ,
ε
2 [ and denote

simply by Ω the subset of RN corresponding to Ω1 = w×]− 1
2 ,

1
2 [= w × I.

Let Γε = ∂w×] − ε
2 ,

ε
2 [ be the lateral surface of Ωε and Γ be the lateral

surface of Ω.
We write x ∈ RN as x = (xα|xN ), with xα ∈ RN−1 and xN ∈ R.
Similarly, if ζ ∈ Rd×N , we write ζ = (ζα|ζN ), where ζα ∈ Rd×(N−1) and
ζN ∈ Rd. We will also use the following notations:

- Q denotes the unit cube of RN centered at the origin with one side
orthogonal to eN , the nth vector of the canonical basis of RN ,

- when related to RN−1 we write Q′ in place of Q,
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- C represents a generic constant,
- we denote by Bε the ball in RN centered at the origin with radius
ε and by B′ε the ball in RN−1 centered at the origin with radius ε,

- we identify γ = (γα|0) ∈ RN with γα ∈ RN−1. Similarly, for β ∈ Rd
and γ = (γα|0) ∈ RN , we write β ⊗ γα ∈ Rd×(N−1) in place of
β ⊗ (γα|0) ∈ Rd×N .

3. Preliminaries

The purpose of this section is to give a brief overview of the concepts
and results that are used in the sequel. All these results are stated without
proofs as they can be readily found in the references given below. Moreover,
we introduce some new definitions.

3.1. Quasiconvex problems in the calculus of variations. We start
by recalling the different notions of convexity used throughout the article.

Definition 3.0.2. (i) A Borel measurable function f : Rd×N → R is
said to be quasiconvex if∫

U
f(ζ +∇φ(x)) dx ≥ f(ζ)|U |

for every bounded domain U ⊂ RN , ζ ∈ Rd×N , and φ ∈W 1,∞
0 (U ;Rd).

(ii) A function f : Rd×N → R̄ = R∪{+∞} is said to be rank one convex
if

f(θζ1 + (1− θ)ζ2) ≤ θf(ζ1) + (1− θ)f(ζ2)

for every ζ1, ζ2 ∈ Rd×N with rank{ζ1 − ζ2} = 1 and every θ ∈ [0, 1].
(iii) A Borel measurable function f : Rd×N → R is said to be quasiaffine

(or equivalently rank one affine) if both f and −f are quasiconvex.
(iv) The different envelopes of a given function f are defined as

Cf = sup{g ≤ f : g convex },
Qf = sup{g ≤ f : g quasiconvex },

Rf = sup{g ≤ f : g rank one convex },
and the following implications hold

f convex ⇒ f quasiconvex ⇒ f rank one convex

which leads to
Cf ≤ Qf ≤ Rf ≤ f.

We remind the following definitions given in [14]:

Definition 3.0.3. Let K ⊂ Rd×N be open and λ ∈ Rd×N .
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i) For ζ ∈ K we denote by LK(ζ, λ) the largest segment of the form
[ζ + tλ, ζ + sλ], t < 0 < s, so that (ζ + tλ, ζ + sλ) ⊂ K.

ii) If LK(ζ, λ) is bounded, we denote by t−(ζ) < 0 < t+(ζ) the elements
so that LK(ζ, λ) = [ζ + t−λ, ζ + t+λ]. They therefore satisfy

ζ + t±λ ∈ ∂K, ζ + tλ ∈ K ∀t ∈ (t−, t+).

iii) If H ⊂ K, we let

LK(H,λ) =
⋃
ζ∈H

LK(ζ, λ).

In order to address a lower dimensional problem involving f̄ we recall
some definitions given in [14] and introduce a new one ( definition iii)
below):

Definition 3.0.4. (Boundedness and stable boundedness in a direction λ).
Let K ⊂ Rd×N be open, ζ0 ∈ K and λ ∈ Rd×N .

i) We say that K is bounded at ζ0 in the direction λ if LK(ζ0, λ) is
bounded.

ii) We say that K is stably bounded at ζ0 in the rank-one direction
λ = β ⊗ γ (with β ∈ Rd, γ ∈ RN ) if there exists ε > 0 so that
LK(ζ0 + β ⊗Bε, λ) is bounded, where

ζ0 + β ⊗Bε := {ζ ∈ Rd×N : ζ = ζ0 + β ⊗ c with |c| < ε}.
iii) Let ζ0,α ∈ Rd×(N−1) such that (ζ0,α|ν0) ∈ K for some ν0 ∈ Rd.

We say that K is uniformly stably bounded at ζ0,α in a direction

λ = β ⊗ γα with β ∈ Rd and γα ∈ RN−1, if there exists ε > 0 such
that for all ν ∈ Rd with (ζ0,α|ν) ∈ K the sets

LK
(
(ζ0,α + β ⊗ B̄′ε|ν), λ

)
are bounded. Moreover, the bound is uniform for such ν ∈ Rd.

Finally we define:

Definition 3.0.5. Let K1 ⊂ Rd×N be open, ζ0 ∈ K1 and λ ∈ Rd×N . We
say that ζ0 is stably contained in K1 in the direction λ if there exists ε > 0
so that LK(ζ0 + β ⊗ B̄ε, λ) ⊂ K1.

The following result which can be found in [14] says, roughly speaking,
that if K is bounded at ζ0 in a rank one direction λ and this boundedness
(in the same direction) is preserved under small perturbations of ζ0 along
rank-one compatible directions, then we can ensure existence of solutions of
(P ). Our primary goal will be to ensure that, under appropriate conditions
on f and K, f̄ and K̄ satisfy its hypothesis.
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Corollary 3.0.1. Let Ω ⊂ RN be a bounded open set, f : Rd×N → R a
lower semicontinuous function and let ζ0 ∈ K where

K = {ζ ∈ Rd×N : QNf(ζ) < f(ζ)}.
If there exists a rank-one direction λ ∈ Rd×N such that

i) K is stably bounded at ζ0 in the direction λ = β ⊗ γ,
ii) QNf is quasiaffine on the set LK(ζ0 + β ⊗ B̄ε, λ),

then the problem

(P ) inf

{∫
Ω
f(∇u(x)) dx : u ∈ uζ0 +W 1,∞

0 (Ω;Rd)
}

has a solution ū ∈ uζ0 +W 1,∞
0 (Ω;Rd).

We will also need the following definition:

Definition 3.0.6. (Uniform quasiaffinity in a direction λ). Let f : Rd×N →
R and K = {QNf < f}.

We say that QNf is uniformly quasiaffine at ζ0,α ∈ Rd×(N−1) in a direc-

tion λ = β ⊗ γα with β ∈ Rd and γα ∈ RN−1, if

a) there exists ν0 ∈ Rd such that (ζ0,α|ν0) ∈ K
b) there exists ε > 0 such that QNf is quasiaffine on the set⋃

{ν∈Rd:(ζ0,α|ν)∈K}

LK
(
(ζ0,α + β ⊗ B̄′ε|ν), λ

)
.

4. Dimension reduction

Dimension reduction techniques, where mechanical properties of lower
dimensional domains are derived via a Γ-convergence (cf. [1], [11], [15])
limiting procedure of variational problems in domains with vanishing thick-
ness, have used extensively following the work of Le Dret and Raoult (cf.
[22]).

We recall in this section the dimension reduction results of Le Dret and
Raoult (cf. [22]). Note that this results, in the context of three-dimensional
elasticity are stated for N = d = 3 but it is a simple exercise to check that
they hold for any N ≥ 2, d ≥ 1. Let f : Rd×N → R a continuous function
satisfying in addition:

(Hp) : there exists C > 0 such that

1

C
(|A|p)− C ≤ f(A) ≤ C

(
1 + |A|p

)
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for all A ∈ Rd×N and for some 1 < p <∞;

For w ⊂ RN−1 open bounded with Lipschitz boundary let

Ωε = w×]− ε

2
,
ε

2
[,

where ε ∈]0, 1].

We consider the problems:

(Pε) inf

{∫
Ωε

f(∇v) dx, v ∈W 1,p(Ωε;Rd)
}

Changing variables i.e. setting u(xα|xN ) = v(xα|εxN ), the rescaled energy
(i.e. divided by ε) is ∫

Ω
f(∇αu|

∇Nu
ε

) dx,

and the scaled problem (Pε) is written as

inf

{∫
Ω
f(∇αu|

∇Nu
ε

) dx, u ∈W 1,p(Ω;Rd)
}
.

Taking into account that we want to consider as targets functions u ∈
uζα +W 1,p

0 (w;Rd) we define:

I(u) = inf
un

{
lim inf
εn→0

∫
Ω
f(∇αun|

∇Nun
εn

) dx, un ∈W 1,p(Ω;Rd) un|Γ = u,

un
Lp−→

n→∞
u
}

Using Γ-convergence techniques it was shown by Le Dret and Raoult for
N = d = 3 (cf. [22]) (se also [4], [5], [6], [7] and [19]) that I(.) ( under the
hypotheses (Hp) on f) admits the following integral representation:

Theorem 4.0.1. Let f : Rd×N → R continuous and satisfying (Hp) for

some 1 < p <∞. For ζα ∈ Rd×(N−1) let u ∈ uζα +W 1,p
0 (w;Rd). Then

I(u) = inf
un

{
lim inf
εn→0

∫
Ω
f(∇αun|

∇Nun
εn

) dx, un ∈W 1,p(Ω;Rd)

un|Γ = u, un
Lp−→

n→∞
u
}

=

∫
w
QN−1f̄(∇u(xα)) dxα.

São Paulo J.Math.Sci. 5, 1 (2011), 37–51



44 José Matias

It is a simple exercise to check that the same representation holds for
any N > 1, d ≥ 1.

5. Sufficient conditions for existence of solutions

5.1. Sufficient conditions for existence of solutions. Motivated by
the result reviewed in the previous section we aim to derive conditions on
f and K that are sufficient to ensure that the following problem admits
solution:

(P̄ ) inf

{∫
w
f̄(∇v(x)) dx, v ∈ vζ0,α +W 1,∞

0 (w;Rd)
}
,

where ζ0,α ∈ K̄ := {ζα : QN−1f̄(ζα) < f̄(ζα)}.
However, as it will be clear latter on, in general we have to restrict ζα to a
subset of K̄ where we can ensure quasiaffinity conditions on f̄ .

We start with the following couple of Lemmas:

Lemma 5.1. Let f : Rd×N → R and ζα ∈ Rd×(N−1). Then

¯QNf(ζα) ≥ QN−1f̄(ζα).

Proof. By definition, for all ζ ∈ Rd×N , ζ = (ζα|ζN ),

QNf(ζ) = inf

{∫
Q
f(ζ +∇v(x)) dx, v ∈W 1,∞

0 (Q;Rd)
}

= inf

{∫
Q
f(ζα +∇αv(x)|ζN +∇Nv(x)) dx, v ∈W 1,∞

0 (Q;Rd)
}

≥ inf

{∫
Q
f̄(ζα +∇αv(x)) dx, v ∈W 1,∞

0 (Q;Rd)
}

= inf

{∫
I

∫
Q′
f̄(ζα +∇vxN (xα)) dxαdxN , v

xN ∈W 1,∞
0 (Q′;Rd)

}
≥
∫
I

inf

(∫
Q′
f̄(ζα +∇w(xα)) dxα, w ∈W 1,∞

0 (Q′;Rd)
)

≥ QN−1f̄(ζα),

where vxN (xα) := v(xα|xN ). The arbitrariness of ζN leads to the desired
result. �

Lemma 5.2. Suppose that f is continuous and satisfies (Hp). Then, f̄ is
continuous. Moreover
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1

C
(|ζα|p)− C ≤ f̄(ζα) ≤ C

(
1 + |ζα|p

)
.

Proof. Let (ζα,n|νn)→ (ζα|ν). Then clearly

lim sup f̄(ζα,n) ≤ f(ζα|ν),

and from the arbitrariness of ν ∈ Rd we conclude that f̄ is upper semi-
continuous. On the other hand, by definition of f̄ , we can pick νn such
that

f(ζα,n|νn) ≤ f̄(ζα,n) +
1

n
.

By (Hp) we have that

1

C
(|νn|p)− C ≤ f(ζα,n|νn) ≤ f̄(ζα,n) +

1

n
≤ C(1 + |ζα,n|p) +

1

n

and we conclude that (up to a subsequence), νn → ν. Therefore

f̄(ζα) ≤ f(ζα|ν) ≤ lim inf
n→∞

f(ζα,n|νn) ≤ lim inf
n→∞

f̄(ζα,n).

Note that the coercivity hypothesis on f implies that in fact

f̄(ζα) = f(ζα|νζα), (5.4)

for some νζα ∈ Rd. Hence

f̄(ζα) = f(ζα|νζα) ≥ 1

C
(|ζα|p)− C.

Therefore f̄ is nonnegative outside a compact set C. Since |f̄ | is continuous
it is bounded on C and hence, for ζα /∈ C,

|f̄(ζα)| = f̄(ζα) ≤ f(ζα|0) ≤ C(1 + |(ζα|0)|p) = C(1 + |ζα|p).
�

Since trivially

QN−1(Q̄Nf(ζα)) ≤ QN−1f̄(ζα),

from Lemma 5.1 we conclude that in fact

QN−1(Q̄Nf(ζα)) = QN−1f̄(ζα).

However in general ¯QNf is not quasiconvex.

For the sake of illustration we state here the following result (Corollary
11 in [22]):
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Corollary 5.2.1. Let f : R3×3 → R continuous and satisfying (Hp). Sup-
pose further that f is frame-indifferent, i.e.

∀ζ ∈ R3×3, R ∈ SO(3), f(Rζ) = f(ζ)

and that f(I) = 0, f(ζ) > 0 if ζ /∈ SO(3). Then QN−1f̄ < f̄ .

Hence, in general we could have that

QN−1f̄ < Q̄Nf

and therefore are unable to derive quasiaffinity conditions on QN−1f̄ from
those assumed in QNf .

However, as was also pointed out by Le Dret and Raoult (cf. [22]), there
are some situations were we have that QN−1f̄ = Q̄Nf , namely:

i) in the scalar case; more precisely, if W : Rd×N → R is convex then
W̄ is convex. Hence, if QNf = CNf ( in particular in the scalar
case) we have that Q̄Nf is convex.

ii) in the case where f̄(ζα) = f(ζα|z), for z ∈ Rd independent of ζα.

(cf. the Remark following Corollary 11 and Proposition 12 in [22]).

It is easy to check that {ζα : QN−1f̄(ζα) < Q̄Nf(ζα)} ⊂ K̄. In order

to adress more general situations we define K̃ as the closure in Rd×(N−1)

of the set {ζα : QN−1f̄(ζα) < Q̄Nf(ζα)} and we will therefore restrict
ourselves to derive sufficient conditions for existence of solutions of ¯(P ) for

ζα ∈ K̄1 := K̄\K̃.
In Le Dret and Raoult (cf. [22]) one can find an explicit example where

K̄1 is non-empty (for the case of the Sain-Venant-Kirchoff materials).

The following Proposition says, roughly speaking, that we can pass the
quasiaffinity hypothesis on QNf onto QN−1f̄ as long as we stay in the
”good” set K̄1.

Proposition 5.2.1. Let f : Rd×N → R a continuous function satisfying
(Hp) and let ζ0,α be stably contained in K̄1 along a direction λ = β ⊗ γα ∈
Rd×(N−1). Suppose further that QN is uniformly quasiaffine at ζ0,α in the
direction λ. Then QN−1f̄ is quasiaffine on LK̄(ζ0,α + β ⊗ B̄′ε, λ), for some
ε > 0.

Proof. Since QNf is uniformly quasiaffine at ζ0,α in a direction λ = β⊗γα ∈
Rd×(N−1) there exists ε0 > 0 such that, for all ν ∈ Rd with (ζ0,α|ν) ∈ K,
we have that QNf is quasiaffine on the set LK((ζ0,α + β ⊗ B̄′ε0 |ν), β ⊗ γ).
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Since, by Lemma 5.2 f̄ is continuous and since QN−1f̄ is lower semicon-
tinuous (cf. [8]) we have that K̄ is open and hence K̄1 is open. Therefore
we can find ε1 > 0 such that ζ0,α + β ⊗ B̄′ε1 ⊂ K̄1. Moreover, since ζ0,α

is stably contained in K̄1 along the direction λ = β ⊗ γα ∈ Rd×(N−1)

there exists ε2 < ε1 such that LK̄(ζ0,α + β ⊗ B̄′ε2 , β ⊗ γ) ⊂ K̄1. Let now

ε = min{ε0, ε2} and consider ζ1
α, ζ

2
α ∈ LK̄(ζ0,α + β ⊗ B̄′ε, λ), more exactly

satisfying ζiα = ζ0,α + β ⊗ c + tiλ, i = 1, 2 for some c ∈ RN−1, |c| ≤ ε.
Trivially for θ ∈ [0, 1],

QN−1f̄(θζ1
α + (1− θ)ζ2

α) ≤ θQN−1f̄(ζ1
α) + (1− θ)QN−1f̄(ζ2

α).

Moreover since ζα is stably contained in K̄1 along the direction λ,

QN−1f̄(θζ1
α + (1− θ)ζ2

α) = ¯QNf(θζ1
α + (1− θ)ζ2

α)

and we have that

QN−1f̄(θζ1
α + (1− θ)ζ2

α) = QNf(θζ1
α + (1− θ)ζ2

α|ν0), (5.5)

for some ν0 ∈ Rd, since QNf is continuous and satisfies naturally the same
coercivity hypothesis than f .

Now it is clear that

QNf(θζ1
α + (1− θ)ζ2

α|ν0) < f(θζ1
α + (1− θ)ζ2

α|ν0), (5.6)

otherwise we would have that

QN−1f̄(θζ1
α + (1− θ)ζ2

α) = f̄(θζ1
α + (1− θ)ζ2

α)

and this would contradict our choice of ζ1
α, ζ

2
α. From (5.6) and our choice

of ε we have that

(θζ1
α + (1− θ)ζ2

α|ν0) ∈ LK((ζ0,α + β ⊗ B̄′ε0 |ν0), λ)

and from the arbitrariness of θ we also have

(ζiα|ν0) ∈ LK((ζ0,α + β ⊗ B̄′ε0 |ν0), λ), i = 1, 2.

Since QNf is quasiaffine on LK((ζ0,α + β ⊗ B̄′ε0 |ν0), λ) and from our choice

of ζiα, i = 1, 2,

QN−1f̄(θζ1
α + (1− θ)ζ2

α) = QNf(θζ1
α + (1− θ)ζ2

α|ν0)

= θQNf(ζ1
α|ν0) + (1− θ)QNf(ζ2

α|ν0)

≥ θ ¯QNf(ζ1
α) + (1− θ) ¯QNf(ζ2

α)

= θQN−1f̄(ζ1
α) + (1− θ)QN−1f̄(ζ2

α).
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The equivalence between quasiaffinity and rank one affinity (cf. [16]) con-
cludes the proof of the claim. �

We are now in position to state the main result:

Theorem 5.2.1. Let f : Rd×N → R continuous and satisfying (Hp). Let

ζ0,α ∈ Rd×(N−1) be stably contained in K̄1 along a direction λ = β ⊗ γα ∈
Rd×N−1. Suppose further that QNf is uniformly quasiaffine at ζ0,α in the
direction λ and that K is uniformly stably bounded at ζ0,α in the direction
λ. Then

(P̄ ) inf

{∫
w
f̄(∇v(x)) dx, v ∈ vζ0,α +W 1,∞

0 (w;Rd)
}

attains solution.

Proof. We start by noting that if ζα is stably contained in K̄1 there exist
ν1
α, ν

2
α ∈ Rd such that

QN−1f̄(ζα) = QNf(ζα|ν1
ζα), f̄(ζα) = f(ζα|ν2

α),

and
QNf(ζα|ν1

ζα) < f(ζα|ν2
α).

Moreover ν1
ζα

can be chosen so that

(ζα|ν1
ζα) ∈ K.

In fact, suppose that for all ν ∈ Rd such that QN−1f̄(ζα) = QNf(ζα|ν) we
have that (ζα|ν) /∈ K. Then trivially, QN−1f̄(ζα) = QNf(ζα|ν) = f(ζα|ν) ≥
f̄(ζα), a contradiction.

Let ε is the minimum from those taken from the hypothesis of uniform
stable boundedness of K at ζ0,α along the direction λ and from the hypoth-
esis of ζ0,α being stably contained in K̄1. Now given any c ∈ RN such that
|c| < ε it is clear, from the hypothesis of uniform stable boundedness, that
for any ν such that (ζα|ν) ∈ K, we have that

(ζα|ν) + β ⊗ c+ t(λ|0) /∈ K
as long as we take |t| large enough. From the note at the beginning of the
proof, since ζ0,α is stably contained in K̄1, we conclude that for c′ ∈ RN−1

with |c′| < ε,
ζα + β ⊗ c′ + tλ /∈ K̄.

In other words, K̄ is stably bounded at ζ0,α along the direction λ. The result
now follows immediately from Proposition 5.2.1 and Corollary 3.0.1. �
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In the case d = 1, taking into consideration the previous comments,
Theorem 5.2.1 reads simply:

Theorem 5.2.2. Let N > 2 and f : RN → R continuous and satisfying
(Hp). Let ζ0,α ∈ K̄. Suppose further that CNf is uniformly affine at ζ0,α

in a direction λ = (λα|0) and that K is uniformly stably bounded at ζ0,α in
the direction λ. Then

(P̄ ) inf

{∫
w
f̄(∇v(x)) dx, v ∈ vζ0,α +W 1,∞

0 (w)

}
attains solution.

Remark 5.2.1. From the proof of Theorem 5.2.1 it is clear that we can
weaken the hypothesis of uniform stable boundedness, namely by dropping
the uniformity of the bound on ν, as long as we impose in addition that the
set {(ζα|t), t ∈ R} ∩K is bounded.

Remark 5.2.2. If d = 1 and in addition N = 2, it is clear that we can drop
the uniform affinity hypothesis since Q1f̄ will always be affine at ζ0,α ∈ K̄.
On this particular case we just need to impose the hypothesis of uniform
stable boundedness at ζ0,α in the direction e1.

5.2. Examples. The following trivial example shows that in general f̄ is
not convex.

Example 1:

Let g : R→ R non-convex and set f : R2 → R such that:

f(x|0) = g(x), f(x|t) = f(x| − t) ≥ f(x|0).

Then, clearly f̄ = g is non-convex.

Note also that, even if (ζα|t) ∈ K for all t ∈ R, we cannot conclude that
f̄(ζα) > C̄f(ζα), i.e. that ζα ∈ K̄. In fact:

Example 2: Consider g : R → R+ non-convex and bounded and set
f : R2 → R such that:

f(x|0) = g(x), f(x|t) = f(x| − t) =
1∣∣1− |t|∣∣g(x).

Then, clearly we could have K unbounded at some x1 in the direction e2

and f̄(x1) = C̄f(x1) = 0.

If we assume that K is bounded on the direction eN at ζα (meaning that
for all t ∈ R such that (ζα|t) ∈ K we have that LK((ζα|t), eN ) is bounded)
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and that Cf is affine on K leads clearly to C̄f(ζα) = Cf(ζ0|t0) = f(ζ0|t0),
for some t0 ∈ R since the infimum is attained at the boundary. Hence
f̄(ζα) = C̄f(ζα), and Problem (P̄ ) has the trivial solution v = vζα .
Following Example 2 we could construct a function f : R2 → R such
that K is bounded on the direction e2, affine on the direction e1 but with
C̄f(x) = Cf(x|t0) < f(x|t0) for some t0 ∈ R.
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