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Abstract. In several applications, information is drawn from quali-
tative variables. In such cases, measures of central tendency and dis-
persion may be highly inappropriate. Variability for categorical data
can be correctly quantified by the so-called diversity measures. These
measures can be modified to quantify heterogeneity between groups (or
subpopulations). Pinheiro et al. (2005) shows that Hamming distance
can be employed in such way and the resulting estimator of hetero-
geneity between populations will be asymptotically normal under mild
regularity conditions.

Pinheiro et al. (2009) proposes a class of weighted U -statistics based
on degenerate kernels of degree 2, called quasi U -statistics, with the
property of asymptotic normality under suitable conditions. This is
generalized to kernels of degree m by Pinheiro et al. (2011). In this
work we generalize this class to an infinite order degenerate kernel.
We then use this powerful tools and the reverse martingale nature of
U -statistics to study the asymptotic behavior of a collection of trans-
formed classic diversity measures. We are able to estimate them in
a common framework instead of the usual individualized estimation
procedures.

MSC 2000: primary - 62G10; secondary - 62G20, 92D20.

1. Introduction

Measures of diversity have been extensively studied in the past century.
Seminal works are motivated either by economics (Gini, 1912), genetics

Key words: within-populations diversity measures, between -populations diversity
measures, asymptotic normality, U-statistics, non-standard asymptotics.

Acknowledgment of support: this research was funded by FAPESP (13/00506-1,
13/16952-0) and CNPq 304512/2011-7.

285



286 A. Pinheiro and P. K. Sen

(Simpson, 1949), information theory (Shannon, 1948) or ecology (Williams,
1945), among other fields.

Rao (1982c) formulates some characterization theorems that relates the
following diversity measures: the Gini-Simnpson index; the Shannon index;
the α-order entropy of Havrda and Charavát; the paired Shannon entropy;
the α-degree entropy of Renyi; and the γ-entropy function. Salicrú et
al. (2005) studies the hypothesis of homogeneity of within-populations
diversity measures under a general framework.

Those works have established mathematically and statistically the fun-
damental properties of those diversity mesures: they can be employed to
provide a reseacher with estimates and tests for within-populations dissim-
ilarity measures. Between-population measures include the Mahalanobis
distance (Mahalanobis, 1936) and Nei’s distance (Nei, 1972;Nei and Roy-
choudhury, 1974; Nei, 1978).

The aforementioned measures of diversity are defined for measuring one
characteristic at a time: a single locus in genetic studies; a single variable
in economics or ecology; a single channel in communications, etc. Areas
of application for diversity measures include: phylogenetis (Anselmo and
Pinheiro, 2012; Moulton et al., 2007; Dress and Steel, 2007); population
genetics (Gillet, 2007; Gilbert et al., 2005, Kussell and Leibler, 2005); time
series analysis (Valk and Pinheiro, 2012); and economics (Nayak and Gast-
wirth, 1989).

It is interesting to generalize the univariate indices for the employment as
multidimensional indices of diversity. Particularly, for genomic data sets,
the number of characteristics is usually very large, each one being gene
expression or DNA pair of bases and so forth. Moreover, dependencies
between loci or genes is a well-known fact (Tavaré and Giddings, 1989;
Gillooly et al., 2005; Politi et al., 2005; Pinheiro et al., 2006; Kim et al.,
2008).

From a parametric or semi-parametric point of view careful study of
the underlying dependence structure should be considered. With such
knowledge, multidimensional diversity measures could then generalize the
one-dimensional statistics. We approach this generalization from a purely
non-parametric paradigm (Sen, 1999; Pinheiro et al., 2005). Other than ro-
bustness against ill-posed assumptions, this procedure will provide a sub-
group decomposability which allows us to compute within and between-
population diversity based upon then same original diversity measures.

Frees (1989) studies the properties of infinite order U -statistics. It proves
asymptotic normality for nondegenerate kernels under a

√
n growth on the

kernel approximation. Pinheiro et al. (2005) shows that a suitable contrast
of U -statistics naturally arising in genomic studies is asymptotically normal
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even though each U -statistics kernel is degenerate. Pinheiro et al. (2011)
proposes a class of degree m quasi U -statistics (and variants) for which
asymptotic normality can be proven under suitable conditions.

We generalize these results to infinite order quasi U -statistics and then
utilize these powerful tools to study a class of diversity measures, equip-
ping it with a common estimation procedure. This procedure will attain
asymptotic normality under mild conditions.

The text goes as follows. In Section 2 we present the general idea of
decomposability of symmetric statistics in terms of the decomposability of
its finite-degree components. In Section 3, some classical diversity results
are presented, as well as their multi-dimensional representations. In Section
4 we introduce the class of quasi U -statistics with infinite order and some
of its most important properties, including the asymptotic normality of its
elements. The special case of Hamming distance-like measures is detailed
in Section 5. Discussion and some final remarks are presented in Section 6.

2. The General Idea of Decomposability of Symmetric Sta-
tistics

Let Y1,Y2, . . . be i.i.d random vectors of dimension K (which may in-
crease) with common distribution F such that

F ≡ λ1F1 + · · ·+ λGFG, (1)

where F1, . . . , FG are probability distribution functions, G ≥ 2 and λ1 +
· · ·+ λG = 1.

Consider G groups defined by Fg, g = 1, . . . , G. The samples are defined

by random vectors Y1(g),Y
(g)
2 , . . . i.i.d. Fg, g = 1, . . . , G. Let θ ≡ θ(λ, F ),

θ(g) = θ(1g, Fg), g = 1, . . . , G (θg is the projection of θ on Fg) , and suppose
θ = EFφ(Y1, . . .) for a concave function φ, i.e.,

θ ≥ λ1θ
(1) + · · ·+ λGθ

(G), (2)

with equality if and only if F ≡ F1 ≡ · · · ≡ FG and/or maxg λg = 1 .

Define a sequence of functionals θm, m ≥ 2, so that

θ = lim
m→∞

θm. (3)

Let

θ(g)
m = Eφm(Y

(g)
1 , . . . ,Y(g)

m ), g = 1, . . . , G

θ(g1,...,gm)
m = Eφm(Y

(g1)
1 , . . . ,Y(gm)

m ),

where the latter is taken for mg random vectors from Fg so that 0 ≤ mg ≤
m, g = 1, . . . , G, and m1 + · · · + mG = m. By (3), θ

(g)
m → θ(g) for each
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g = 1, . . . , G. Choose λg = mg/m, for g = 1, . . . , G. One has by (2)

θ(g1,...,gm)
m ≥ m1θ

(1)
m + · · ·+mGθ

(G)
m ,

with equality iff θ
(1)
m ≡ · · · ≡ θ(G)

m and/or maxgmg = m.

We can then interpret the G random samples as a single sample from F
of size n =

∑G
g=1 ng with mixture probabilities mg/m, g = 1, . . . , G. Each

(λ1, · · · , λG) is an element of the (G-1)-simplex SG−1. Consequently, any
(m1, · · · ,mG) is such that (m1/m, · · · ,mG/m) is an element of SG−1

⋂
LGm,

where Lm is the lattice formed by real numbers between 0 and 1 with grid
steps 1/m.

3. Some Classical Diversity Measures

Some metrics have been widely used for the analysis of qualitative data.
They include the Hamming, Nei and Mahalanobis distances. Based on these
metrics, statistical measurement of variability can be pursued. The aim of
the analysis may be measuring variability for homogeneous populations
(within variability) or between populations (between variability). Initially,
the diversity measures were built for individual characteristics or specific
locus but they can be generalized to incorporate multivariate elements.

The Gini-Simpson index of diversity (Gini, 1912; Simpson, 1949; Nei,
1972; Lewontin, 1972) is defined as follows. Let π = {π1, . . . , πC} be
the probabilities of C alleles (nucleotide or amino acid) at a locus in a
population. The gene diversity at that locus is

h = 1−
C∑
i=1

π2
i . (1)

One may estimate h by the plug-in estimator ĥ, but Nei & Roychoud-
hury (1974) and Nei (1978) present other parametric alternatives which can
outperform the Gini-Simpson plug-in estimator.

Another popular choice of diversity measure is the Shannon Information
Index

hs = −
C∑
i=1

πi logeπi, (2)

motivated in information theory by entropy concepts. It has been success-
fully applied in ecology and evolutionary genetics (Lewontin, 1972; Rao,
1982a,b; Magurran, 1988). Its plug-in estimator is also biased (Hutcheson,
1970; Bowman et al., 1971), although there are simple parametric alterna-
tives for bias correction (Peet, 1974).

São Paulo J.Math.Sci. 8, 2 (2014), 285–309



Quasi U -statistics of infinite order and applications to the subgroup decomposition of some
diversity measures 289

The index

hH(π) =

[
C∑
i=1

παi

]1/(1−α)

(3)

is the basis of another approach to unify diversity measures (Hill, 1973).

Rao (1982c) formulates a characterization theorem which states that, if
a measure of diversity h(π) = h(π1, . . . , πC) satisfies

(i) h(π) is symmetric with respect to the components of π and attains
its maximum when all C categories are equally frequent

(ii) h(π) admits partial derivatives up to the second order of the C −
1 independent components of π and the matrix of second par-
tial derivatives, h”(π) = (h”

ij(π)) for i, j = 1, 2, . . . , C − 1 with

h”
ij(π) = ∂2h(π)/∂πi∂πj , is continuous and not null at π = e ≡

(1/C, . . . , 1/C)
(iii) h{(π + e)/2} = 1

2{h(π) + h(e)} = k{h(e) − h(π)}, where k is a
constant,

then h(π) must be of the form

h(π) = a

[
1−

C∑
i=1

π2
i

]
+ b (4)

where a > 0 and b are constants, i.e. it characterizes the Gini-Simpson
gene diversity index (1) and diversity measures based on it.

On the other hand, the Shannon-Information Index given by (2) and the
four indices, the α-order entropy of Havrda and Charavát, given by

hα(π) = [1−
C∑
i=1

παi ]/[2α−1 − 1] for α > 0 and α 6= 1,

the paired Shannon entropy, given by

hp(π) = −
C∑
i=1

πi lnπi −
C∑
i=1

(1− pi) ln(1− πi),

the α-degree entropy of Renyi, given by

hR(π) = (1− α)−1 ln(

C∑
i=1

παi ) for 0 < α < 1,
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and the γ-entropy function, given by

hγ(π) = [1− (
C∑
i=1

π
1/γ
i )γ ]/[1− 2γ−1] for γ > 0, γ 6= 1,

satisfy the following two conditions

C1: h(π) = 0 if and only if all components of π are zero except for one
(i.e., πi = 1 for one i and the remaining πi’s are all zero)

C2: h{λπ + (1− λ)θ} ≥ λh(π) + (1− λ)h(θ), with equality if and only if
π = θ (concavity property),

as seen in Rao (1982a) and Rao & Boudreau (1984).

Salicru et al. (2005) proposes homogeneity tests for such class of within-
populations univariate diversity measures. In many applications, including
DNA and amino-acid sequences, one would like to study several character-
istics. That can be done by suitable generalizations of the above measures
of diversity. Pinheiro et al. (2011) presents a class of test statistics for a
general class of multivariate diversity measures which take as special cases
diversity measures of finite order. In this work we go a step further in-
corporating infinite order diversity measures to the class of asymptotically
normal test statistics defined in Pinheiro et al. (2011).

Consider K characteristics (or loci) and C categories. Let πck the re-
spective probability for the c-th category on the k-th characteristic, k =
1, . . . ,K, and c = 1, . . . , C.

One can see that the generalized Hamming metric is given by

hHa(π) = 1− 1

K

K∑
k=1

C∑
c=1

π2
ck,

the generalized Shannon can be written as

hSh(π) = − 1

K

K∑
k=1

C∑
c=1

πck lnπck,

the generalized α-th order entropy of Havrda and Charavát, as

hHC,α =

[
1− 1

K

K∑
k=1

C∑
c=1

παck

]
/
[
2α−1 − 1

]
for 0 < α 6= 1, the generalized paired Shannon entropy, as

hpSh(π) = − 1

K

K∑
k=1

C∑
c=1

πck lnπck −
1

K

K∑
k=1

C∑
c=1

(1− πck) ln(1− πck),
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the generalized α-degree entropy of Renyi, as

hR,α(π) = (1− α)−1 ln

(
1

K

K∑
k=1

C∑
c=1

παck

)
for 0 < α < 1, and the γ-entropy function, as

hE,γ =

[
1−

(
1

K

K∑
k=1

C∑
c=1

π
1/γ
ck

)γ]
/
[
1− 2γ−1

]
,

for 0 < γ 6= 1.

These generalizations due to the length of the sequences do not preclude
us from further generalizations through conveniently weighing in character-
istics and/or categories. For the sake of notational simplicity we proceed
on the ordinary form above but the results hold for the general weighted
diversity measures as well.

4. A Class of Infinite Order Quasi U-statistics with a Mar-
tingale Representation and Asymptotic Normality

The results in this section generalizes to an infinite order kernel the class
introduced in Pinheiro et al. (2011). Some of the proofs are shorter, and
we direct the readers to this previous manuscript for further details. Define
Tn as the following function of a symmetric kernel φ:

Tn =

1,n∑
i1,...,imn

ηn,i1···imn
φ(Yi1 , . . . ,Yimn

). (1)

We assume the following conditions:

(i) the degree of the kernel is increasing as the sample size increases, i.e.
mn →∞, but mn = o(n) as n→∞,

(ii) ηn,i1···imn
are such that

1,n∑
i1,...,imn

ηn,i1···imn
= 0, (2)

and
1,n∑

i1,...,imn

η2
n,i1···imn

= Mn(which increases in n ≥ mn), (3)

(iii)
∑1,n

i1,...,imn
is taken on all strictly ordered permutations of 1, . . . , n,
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(iv) φ(·, . . . , ·) is a kernel of degree mn, stationary of order rn (1 ≤ rn <
mn), for which we let θmn = Eφ(Y1, . . . ,Ymn), and

(v) Y1,Y2, . . . are i.i.d. random vectors of dimension K.

The class of weighted U -statistics defined by (1), which we call quasi
U -statistics (Pinheiro et al., 2011) possess a natural martingale representa-
tion. From this, one is able to ascertain asymptotic normality via a martin-
gale central limit theorem. For the martingale property, one assumes that
φ(·, . . . , ·) is a symmetric stationary kernel of order rn = mn − 1, centered
at 0, and forms an orthogonal system for which

E[φ(Y1, . . . ,Ymn) | Y1, . . . ,Yj ] = 0 a.e., ∀j ≤ rn (4)

and Y1, . . . ,Yn i.i.d. with a distribution F . Moreover, the ηn,i1···imn
, 1 ≤

i1 < · · · < imn ≤ n are such that (2) holds and

1,n∑
i1,...,imn

η2
n,i1···imn

= Mn(↗ in n ≥ mn). (5)

Lemma 4.1. Consider Tn as in (1), with mn = rn + 1. Define

Znj =

1,j−1∑
i1,...,imn−1

ηn,i1···imn−1jφ(Yi1 , · · · ,Yimn−1 ,Yj),

for every j = mn, . . . , n, and Tnk = Znmn + · · · + Znk, for mn ≤ k ≤ n.
Define Bnk = σ (Yi, i ≤ k, for mn ≤ k ≤ n). Then, {Tnk,Bnk : mn ≤ k ≤
n} is a zero-mean martingale array closed on the right by Tn.

Proof This proof is omitted. We refer the reader to the proof of Lemma
1 in [Pinheiro et al. , 2009] for details. �

Let τ2mn = Eφ2(Y1, . . . ,Ymn) > 0 such that

τ2 = lim
mn→∞

τ2mn > 0. (6)

In Theorems 4.1 and 4.2 we show that Tn will be asymptotically normal
for kernels with finite second moments and a uniform integrability con-
dition. Theorem 4.2 proposes a permutation estimator of τ2. Theorem
4.3 and 4.4 drop the uniform integrability condition with stronger moment
conditions for φ, finite (2 + δ)-th moments for the former and finite fourth
moments for the latter. Both Theorems 4.3 and 4.4 possess the same per-
mutation estimator of τ2.
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The following notation will be used in these theorems. Take the following
cumulative sums:

mnk =

1,k∑
i1,...,imn−1

η2
n,i1,...,imn−1,k, (7)

νnk = mnkτ2, (8)

νn = νnmn + . . .+ νnn = Mnτ2, (9)

when mn ≤ k ≤ n.

We take

max
mn≤k≤n

mnk/Mn → 0 when n→∞, (10)

Z2
nk/mnk are uniformly integrable when n→∞. (11)

Theorem 4.1. Let φ(·, ·) be a degree mn kernel, centered, stationary of
order mn − 1, such that mn = o(n) as n↗∞, for which (A) (2), (5) and
(6)-(11) hold. Then,

Ln = (νn)−1/2Tn
D−→ N(0, 1) as n→∞. (12)

Proof We use Corollary 2.8 from [McLeish , 1974]. Inequality 3.5 from
[Burkholder , 1974] is employed to show the first condition of the aforemen-
tioned corollary, while mn = o(n) is needed for its first condition. We refer
the reader to Theorem 1 of [Pinheiro et al. , 2011] for further details. �

Theorem 4.2. Let φ(·, ·) be a degree mn kernel, centered, stationary of
order mn − 1, such that mn = o(n) as n→∞, for which (A) (2), (5) and
(6)-(11) hold. Let

U (mn)
n =

(
n

mn

)−1 1,n∑
i1,...,imn

φ2(Yi1 , . . . ,Yimn
). (13)

Then as n→∞,

Ln = (MnU
(mn)
n )−1/2Tn

D−→ N(0, 1). (14)

Proof Since U
(mn)
n , a U -statistic and unbiased estimator of τ2mn , is a

reverse martingale, U
(mn)
n

a.s.→ τ2, as n→∞. (14) then follows from (9) and
(12). �

Theorem 4.3. Let φ(·, ·) be a kernel and assume that, for each n, φ has
degree mn (which increases in n → ∞ but mn = o(n)), is centered, and
stationary of order mn − 1 such that

(B.1) E |φ(Y1, . . . ,Ymn)|2+δ <∞, for some positive δ,
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(B.2) (2), (5) and (6)-(10) hold.

Let U
(mn)
n be defined by (13). Then as n→∞,

Ln = (MnU
(mn)
n )−1/2Tn

D−→ N(0, 1). (15)

.

Proof Note that U
(mn)
n is an estimator of τ2mn with bounded variance

(away from 0 and ∞). Thus, U
(mn)
n

a.s.→ τ2, as n→∞. Since the (2 + δ)-th
moment of φ is finite one does not need the uniform integrability condition,
and (15) follows from martingale CLT and Slustky given mn/n small. �

Now we assume a finite fourth moment of φ . This enables us to base
our variance estimation on permutation techniques. Take

b(j)n =

1,n∑
i1,...,imn

1,n∑
j1,...,jmn

ηn,i1...imn
ηn,j1...jmn

,

for j = 0, . . . ,mn. Note that
∑mn−1

j=0 b
(j)
n = −Mn, and assume

mn∑
j=0

b(j)2n /nmn+j−1 = o(M2
n) as n→∞. (16)

Theorem 4.4. Let φ(·, ·) be a degree mn kernel, centered, stationary of
order mn − 1 such that mn increases in n→∞ but mn = o(n), and

(C.1) Eφ4(Y1, . . . ,Ymn) <∞,

(C.2) (2), (5), (6)-(9) and (16) hold.

Then, as n→∞,

Ln = (MnU
(mn)
n )−1/2Tn

D−→ N(0, 1). (17)

Proof We use the Martingale Array Central Limit Theorem from Dvoret-
zky [1972]. Instead of the usual Lindeberg condition we employ the
(stronger) Liapounouff condition. The degeneracy of cross products of U -
statistics and (16) ensure the CLT’s conditions. �

In the remaining text we present two theorems for high-dimensional data.
For this, besides the increasing degree of φ an extra dimensional burden is
put on the problem as K may be large. This is not a problem for quasi
U -statistics if n is also large, as can be seen in Theorem 4.5, for which no
extra conditions are imposed when both n and/or K are large. Theorem
4.6 discusses the case in which K is large and n may be small. Conditions
for this latter theorem are quite simplified when compared with the former.
In both instances stochastic weights are addressed. Since stochastic weights
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may have direct applicability due to sampling schemes this new situation
is very interesting specially because it doesn’t impose any major burden on
the proof. Thence, we can consider deterministic weights as a special case.

Theorem 4.5. Let Y1, . . . ,Yn be a sequence of i.i.d. K×1 random vectors.
Let φ(·, . . . , ·) be a kernel of degree m, which increases in n → ∞ but
m = o(n), such that

φ(Yi1 , . . . ,Yim) =
1

K

K∑
l=1

φ?(Yi1l, . . . , Yiml), (18)

for some kernel, stationary of order m − 1, φ?(·, . . . , ·). Let Tn be defined
by (1). Assume that one out of the following set of conditions:

(a) - (6)-(9), (11), mnk = op(Mn) as n→∞ hold ;

(b) - (6)-(9), mnk = op(Mn) as n→∞ and (B.1) hold ;

(c) - (6),
∑m

j=0 b
(j)2
n /nm+j−1 = op(M

2
n) as n→∞ and (C.1) hold.

Suppose that {ηni1...im , 1 ≤ i1 < · · · < im ≤ n , n ≥ m} is a triangular
array of random variables independent of {Y1, . . . ,Yn , n ≥ m}, and∑

1≤i1<···<im≤n
η2
ni1...im −Mn = op(Mn) as n→∞. (19)

Suppose also that∑
1≤l<q≤K

E [φ?(Yi1l, · · · , Yiml)φ?(Yi1q, · · · , Yimq)] = O(K) as K →∞. (20)

Then

(KMnU
(m)
n )−1/2Tn

D→ N(0,1) as n→∞ and K →∞, (21)

where U
(m)
n is defined by (13).

Proof Take {ηn,i1...im : 1 ≤ i1 < . . . < im ≤ n}, n ≥ m to be determin-

istic, such that
∑1,n

i1,...,im
ηn,i1...im = 0 and

∑1,n
i1,...,im

η2
n,i1...im

=
(
n
m

)
. Employ

Theorems 4.1 and 4.2.

The asymptotic equivalence in probability of stochastic and deterministic
weights is then proved given the regularity condition (19), and (21) follows
by Dvoretzky [1972]. �

Theorem 4.6. Let Tn be defined as in Theorem 4.5. Suppose that (20)
holds. Then,

Tn/
√
V ar(Tn)

D→ N(0, 1),

as K →∞ (either if n→∞, n/K → 0, as K →∞ or if n is bounded).
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Proof

We apply Theorem 2.1 [Withers, 1981]. Let

Sn = Tn/
√
Mn = K−1

K∑
k=1

tnk/
√
Mn = K−1

K∑
k=1

xnk,

where tnk =
∑1,n

i1,...,im
ηn,i1...imφ

∗(Xi1k, . . . , Ximk).

The rate of growth of the partial sums (2 + ε)-norm is guaranteed by
construction.

The mixing condition (20) ensures the l-mixing [Yoshihara, 1993]. More-
over, (20) also implies that V ar(Sn) = O(K) → ∞ as K → ∞ and that
the covariances are absolutely summable. Therefore, the CLT holds for Tn
at a rate O(

√
K) if n is bounded or O(n

√
K) if both K →∞ and n→∞.

�

5. Representation of Diversity Measures as Weighted U-
statistics and Quasi U-statistics

In this section we propose a class of multidimensional diversity mea-
sures. This class has as special cases all the aforementioned within - popu-
lations diversity measures. Moreover, we are able to generate both within-
populations and between-populations which are functionally equivalent and
are asymptotically normal under both null and alternative hypotheses. We
motivate this procedure by such a sub-group decomposition of the Ham-
ming distance, as presented in Pinheiro et al. (2005).

Suppose a population that can be naturally divided in G groups. One
is interested in assessing information of homogeneity among the groups.
Consider ng observations for group g = 1, . . . , G. Each observation is a
K-dimensional vector so that each variate can assume one of C categori-
cal values. For instance, in genetic problems, each dimension can be the
response of a particular gene, a DNA basis or some aminoacid, as in protei-
nomic data. We may assume that K is limited as in Theorem 4.1 or that
K is large, such as in Theorems 4.2-4.6.

Let Xg1, . . . ,Xgng be the K-dimensional i.i.d. observations for the g-
th group, g = 1, . . . , G. We can define the gene (Gini-Simpson) diversity
measure for the g-th group as

Dg = 1− 1

K

K∑
k=1

C∑
c=1

π2
(g)kc, (22)

for π(g) = {π(g)kc}k=1,...,K;c=1,...,C , where π(g)kc is the probability of Xg1k =
c, c = 1, . . . , C, k = 1, . . . ,K, and g = 1, . . . , G.
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The Hamming distance between Xgi and Xgj is given by

Dg:ij =
1

K

K∑
k=1

I(Xgik 6= Xgjk) g = 1, . . . , G.

As a non-degenerate U -statistics of degree two, an unbiased and asymptot-
ically normal estimator of Dg is given by

D̄gg =

(
n

2

)−1 ∑
1≤i<j≤n

Dg:ij g = 1, . . . , G. (23)

Similarly to the within-populations measures defined by (23), one nat-
urally defines the between-populations by the generalized two-sample U -
statistics

D̄gg′ =

(
n

2

)−1 ∑
1≤i<j≤n

Dgg′:ij , (24)

where

Dgg′:ij =
1

K

K∑
k=1

I(Xgik 6= Xg′jk) 1 ≤ g < g′ ≤ G.

D̄gg′ is an unbiased and asymptotically normal estimator of the Gini-
Simpson diversity measure between the g-th and g′-th populations.

Dgg′ = 1− 1

K

K∑
k=1

C∑
c=1

π(g)kcπ(g′)kc. (25)

Pinheiro et al. (2005) then tests H0 : Dgg′ = Dgg ∀g 6= g′ versus
H1 : 2Dgg′ > Dgg + Dg′g′ for some g < g′. The following subgroup de-
composition of the overall sample Hamming distance id defined:

D(0)
n = Dn(W ) +Dn(B), (26)

where Dn(W ) and Dn(B) are the overall within and between measures,
respectively.

Under H0, EDn(B) = 0 and can be written as a contrast based on a
degenerate U -statistics kernel, say φ. Eventhough φ is degenerate, (n −
1)Dn(B) is proven to be asymptotically normal (Pinheiro et al., 2011).

Motivated by this, we propose the following class of diversity class

Definition 5.1 (A Class of Multidimensional Diversity Measures). The
class of U -statistics and Quasi U -statistics estimable and decomposable mul-
tidimensional diversity measures, M, is given by any h(π,w) such that

h(π,w,w∗,K) =
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= g

 1

K

C∑
c=1

K∑
k=1

∞∑
j=1

wjπck(1− πck)j ,
1

K

C∑
c=1

K∑
k=1

∞∑
j=2

wj∗π
j
ck(1− πck)

 ,

where g : R2 → R is a continuous and differentiable function, π is a C×K
matrix for which each column is a discrete probability distribution, and w
and w∗ are (possibly infinite) sequences of constants.

We should note that we can easily extend this class to contain its limits
in the sense that any h(π,w,w∗,∞), defined by

g

lim
K→∞

1

K

C∑
c=1

K∑
k=1

∞∑
j=1

wjπck(1− πck)j , lim
K→∞

1

K

C∑
c=1

K∑
k=1

∞∑
j=2

wj∗π
j
ck(1− πck)

,
should be an element ofM whenever this limit is reasonable. For the sake
of notational simplicity, we will continue treating K as finite, unless noted
otherwise. Below, we illustrate this class with the generalized classical
diversity measures. First, we define

HK,j+1 ≡ K−1
K∑
k=1

C∑
c=1

πck(1− πck)j = E [φj+1(X1, . . . ,Xj+1)] , where

φj+1(X1, . . . ,Xj+1) = K−1(j + 1)−1
K∑
k=1

j+1∑
i=1

I [Xik 6= Xlk, l 6= i] , and

HK,j+1∗ ≡ K−1
K∑
k=1

C∑
c=1

πjck(1− πck) = E [φj+1∗(X1, . . . ,Xj+1)] , where

φj+1∗(X1, . . . ,Xj+1) =

= K−1(j + 1)−1
K∑
k=1

j+1∑
i=1

I
[
Xi1k = · · · = Xijk 6= Xik; i1, . . . , ij 6= i

]
,

for j = 1, . . . , n− 1.

A suitable combination of K−1
∑K

k=1

∑C
c=1 πck(1 − πck)

j and

K−1
∑K

k=1

∑C
c=1 π

j
ck(1 − πck), j ≥ 1 can represent each cited diver-

sity measure, and all of those can be estimated by weighted U -

statistics of the form
(
n
j+1

)−1∑1,n
i1,...,ij+1

φj+1(Xi1 , . . . ,Xij+1) and(
n
j+1

)−1∑1,n
i1,...,ij+1

φj+1∗(Xi1 , . . . ,Xij+1), j ≤ 1. Here
∑1,n

i1,...,ij+1
represents

the sum for 1 ≤ i1 < · · · < ij+1 ≤ n.
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Consider r ∈ N. The Shannon index can be written as

hSh(π) = hHa(π) +K−1
∞∑
j=2

K∑
k=1

1

j
πck(1− πck)j ,

which is estimated by the following linear combination of U -statistics as

ĥSh;r =

r∑
j=1

j−1

(
n

j + 1

)−1 1,n∑
i1,...,ij+1

φj+1(Xi1 , . . . ,Xij+1).

The α-th order entropy of Havrda and Charavát can be written as

hHC,α =
[
2α−1 − 1

]−1

1−K−1
K∑
k=1

∞∑
j=1

(
α− 1

j

)
(−1)j

C∑
c=1

πck(1− πck)j
 ,

for which a natural estimator is

ĥHC,α;r =

=
[
2α−1−1

]−1

1−
r∑
j=1

(
α− 1

j

)
(−1)j

(
n

j + 1

)−1 1,n∑
i1,...,ij+1

φj+1(Xi1 , . . . ,Xij+1)

.
The paired Shannon entropy can be represented as

hpSh(π) =

= 2hHa(π)+K−1
∞∑
j=2

1

j

K∑
k=1

C∑
c=1

πck(1−πck)j+K−1
∞∑
j=2

1

j

K∑
k=1

C∑
c=1

πjck(1−πck)

so that it is naturally estimated by

ĥpSh(π) = 2

(
n

2

)−1 ∑
1≤i<j≤n

φ2(Xi,Xj)+

+

r∑
j=2

j−1

(
n

j + 1

)−1 1,n∑
i1,...,ij+1

φj+1(Xi1 , . . . ,Xij+1)+

+

r∑
j=2

j−1

(
n

j + 1

)−1 1,n∑
i1,...,ij+1

φj+1∗(Xi1 , . . . ,Xij+1).

In the case of the α-degree entropy of Renyi, note that

exp ({(1− α)hR,α(π)}) = 1− (2α−1 − 1)hHC,α(π),
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so that

ĥR,α;r = 1/(1− α) ln
{

1− (2α−1 − 1)ĥHC,α;r

}
.

Finally, we can represent the γ-entropy function as

hE,γ(π) =
(
1− 2γ−1

)−1
[
1−

{
1− (21/γ−1 − 1)hHC,α(π)

}γ]
,

and its U -statistics based estimator is given by

ĥE,γ;r = 1/
(
1− 2γ−1

) [
1−

{
1− (21/γ−1 − 1)ĥHC,α;r

}γ]
.

In general, h(π,w,w∗,K) can be estimated by

ĥ(w,w∗,K) = g

 ∞∑
j=1

wj

(
n

j + 1

)−1 1,n∑
i1,...,ij+1

φj+1(Xi1 , . . . , Xij+1),

∞∑
j=2

wj∗

(
n

j + 1

)−1 1,n∑
i1,...,ij+1

φj+1∗(Xi1 , . . . , Xij+1)

 .

An analogously subgroup decomposability that holds for the generalized
Hamming distance given by (26) will hold for any of the aforementioned
diversity measures. Therefore, any diversity measure based on Definition
5.1 will provide us with within-populations and between-populations di-
versity measures (indistinguishably from the functional point of view), a
decomposition of the overall measure of dissimilarity, and a unilateral test
procedure for homogeneous probabilistic distributions along the groups.

Suppose now G populations driven by G different discrete distributions,
say π(1), . . . ,π(G), and from which a sample of n observations is drawn as
follows. Xg,1, . . . ,Xg,ng are i.i.d. ∼ π(g), g = 1, . . . , G, n = n1 + · · · + nG.
One can build a between-populations measure of diversity which will be a
contrast of U -statistics, based upon functions of the previously mentioned

kernels φj+1, j = 1, 2, . . . and φl+1∗, l = 2, . . ., say φ
(0)
j+1, j = 1, 2, . . .,

and φ
(0)
l+1∗, l = 2, . . .. Even though, under the hypothesis of homogeneity,

H0 : π(1) = · · · = π(G), the aforementioned kernels {φ(0) and φl∗(0) are
all degenerate (of stationary order 1), we are able to prove asymptotic
normality, by the general results in Section 2.

We will prove now that such estimators for the within-populations diver-
sity measures will be asymptotically normal whenever at least one of the
kernels is non-degenerate. The non-degeneracy is true unless the discrete
probability distribution is uniform for every k = 1, . . . ,K or if every char-
acteristic equals one category with probability one (Pinheiro et al., 2008).
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Other than those rather uninteresting exceptions, the usual U -statistics
asymptotics will prevail for n large and limited K. In genetic analysis, one
usually has large K (Sen, 2006). If n and K are both large, asymptotic
normality will be also true for any dependent structure considered along
the K characteristics. If n is limited but K large, it is proven that normal
asymptotics will hold, under reasonable mixing conditions. However, for
large K and small n, if the degree of the kernel is infinite, a bias will remain,
giving the projection of the kernel onto a maximum degree (limited by n).

We first consider the within-populations measures. For that, we need to
employ Hoeffding’s decomposition on the U -statistics. However, since, in
the case of homogeneity tests, we will be dealing with first-order degeneracy,
we present the following set of orthonormal functions for both Hoeffding’s
projection on both their first and second orders.

Without loss of generality, we will present the following results with
no indexing by groups. Whenever those differences matter, we will point
that out and proceed accordingly. The first and secod order Hoeffding
projections are given by:

ψ21(x1) = E (φ2(X1,X2)|X1 = x1) = K−1
K∑
k=1

(1− πx1kk),

ψ22(x1,x2) = E (φ2(X1,X2)|X1 = x1,X2 = x2) = K−1
K∑
k=1

I(x1k 6= x2k),

ψj+1,1(x1) = (j+1)−1K−1


K∑
k=1

(1− πx1kk)
j + j

K∑
k=1

∑
d6=x1k

πdk(1− πdk)j−1


for 2 ≤ j ≤ r,

ψj+1,2(x1,x2) = (j + 1)−1K−1

{
K∑
k=1

(1− πx1kk)
j−1I(x1k 6= x2k) +

+
K∑
k=1

(1− πx2kk)
j−1I(x1k 6= x2k) + (j − 1)

K∑
k=1

∑
c 6=x1k,x2k

πck (1− πck)j−2


for 2 ≤ j ≤ r,

ψj+1,1∗(x1,x2) = (j + 1)−1K−1

{
j

K∑
k=1

πj−1
x1kk

(1− πx1kk) +

K∑
k=1

(1− πjx1kk

}
,
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ψj+1,2∗(x1,x2) = (j + 1)−1K−1

{
K∑
k=1

πj−1
x1kk

I(x1k 6= x2k) +

+
K∑
k=1

πj−1
x2kk

I(x1k 6= x2k) + (j − 1)
K∑
k=1

πj−2
x1kk

(1− πx1kk)I(x1k 6= x2k)

}
for 2 ≤ j ≤ r.

Let πck,dl be the probability of observing a c on the k-th position, and d
on the l-th position. Since we do not impose any dependency structure these
and other probabilities need to be taken into account as such. Consider

h(π,w,w∗,K) = g (θ(π,w,w∗,K)) ,

where
θ(π,w,w∗,K) =

=

 1

K

C∑
c=1

K∑
k=1

∞∑
j=1

wjπck(1− πck)j ,
1

K

C∑
c=1

K∑
k=1

∞∑
j=2

wj∗π
j
ck(1− πck)

 .

We have

Eψ21(Xi)ψj+1,1(Xi) = K−2(j+1)−1

{
K∑
k=1

C∑
c=1

πck(1− πck)j [1− (j + 1)πck]

+j
K∑
k=1

∑
c,d

πckπdk(1− πck)(1− πdk)j−1 +
∑
k 6=l

∑
c,d

πck,dl(1− πck)(1− πdl)j−1

× [1−(j + 1)πdl]+j

K2HK,2HK,j−1−
K∑
k=1

∑
c,d

πckπdk(1− πck)(1− πdl)j−1

.
Eψj+1,1(Xi)

2 = (j + 1)−2K−2

{
K∑
k=1

C∑
c=1

πck(1− πck)2(j−1)×

[
(1− πck)2 − 2jπck(1− πck) + j2π2

ck

]
+ j

k∑
k=1

C∑
d=1

πdk(1− πdk)j−1
C∑
c=1

πck×[
2(1− πck)j + j

C∑
d=1

πdk(1− πdk)j−1 − 2jπck(1− πck)j−1

]
+

+
∑
k 6=l

∑
c,d

πck,dl(1− πck)j(1− πdl)j +
∑
k 6=l

∑
c,d,e

πck,dl(1− πck)jπel(1− πel)j−1−
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−2j
∑
k 6=l

∑
c,d

πck,dl(1− πck)jπdl(1− πdl)j−1+

+j2
∑
k 6=l

∑
c,d,e,f

πck,dlπelπfk(1− πel)j−1(1− πfk)j−1−

−j2
K∑
k=1

∑
c,d,f

πck,dlπdlπfk(1− πdl)j−1×

×(1− πfk)j−1 − j2
K∑
k=1

∑
c,d

πck,dlπckπdl(1− πck)j−1(1− πdl)j−1

 .

Eψj+1,1(Xi)ψm+1,1(Xi) = K−2(j + 1)−1(m+ 1)−1×
K∑
k=1

C∑
c=1

πck(1− πck)j
∑
d 6=c

πdk(1− πdk)m−1

+m
∑
k 6=l

∑
c,d

πck,dl(1− πck)j
∑
e 6=d

πel(1− πel)m−1 + j

K∑
k=1

C∑
c=1

πck(1− πck)m−1

×
∑
d6=c

πdk(1− πdk)j−1 + j
∑
k 6=l

∑
c,d

πck(1− πck)m
∑
e6=d

πel(1− πel)j−1

+jm
∑
k 6=l

C∑
c=1

πck
∑
d6=c

πdk(1− πdk)j−1
∑
e6=c

πek(1− πek)m−1

+jm
∑
k 6=l

∑
c,d

πck,dl
∑
e6=c

πek(1− πek)j−1
∑
f 6=d

πfl(1− πfl)m−1

 .

Eψj+1,1(Xi)ψm+1,1∗(Xi) = K−2(j + 1)−1(m+ 1)−1×

×

{
K∑
k=1

C∑
c=1

πck(1− πck)j [(1− πck)m mjπmck − jπck(1− πck)m−1+

+mπm−1
ck (1− πck)

]
+ j

K∑
k=1

C∑
c,d=1

πckπdk(1− πck)m(1− πdk)j−1

+mj
K∑
k=1

C∑
c,d=1

πmckπdk(1−πck)(1−πdk)j−1+
∑
k 6=l

C∑
c,d=1

πck,dl(1−πck)j(1−πdl)m+
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+m
∑
k 6=l

C∑
c,d=1

πck,dl(1− πck)jπm−1
dl (1− πdl)+

+j
∑
k 6=l

C∑
c,d,e=1

πck,dlπek(1− πek)j−1(1− πdl)m

+mj
∑
k 6=l

C∑
c,d,e=1

πck,dlπek(1− πek)j−1πm−1
dl (1− πdl)−

−j
∑
k 6=l

C∑
c,d=1

πck,dlπck(1− πck)j−1(1− πdl)−

−mj
∑
k 6=l

C∑
c,d=1

πck,dlπck(1− πck)j−1πm−1
dl (1− πdl)m

 .

Eψj+1,1∗(Xi)
2 = (j + 1)−2K−2

{
j2

K∑
k=1

C∑
c=1

π2j−1
ck (1− πck)2+

+j2
∑
k 6=l

C∑
c,d=1

πck,dlπ
j−1
ck πj−1

dl (1− πck)(1− πdl) + 2j
K∑
k=1

C∑
c=1

πjck(1− πck)
j+1+

+2
j

(j + 1)2
K−2

∑
k 6=l

C∑
c,d=1

πck,dlπ
j−1
ck (1− πck)(1− πdl)j+

+
K∑
k=1

C∑
c=1

πck(1− πck)2j +
∑
k 6=l

C∑
c,d=1

πck,dl(1− πck)2(1− πdl)j
 .

Eψ21(Xi)ψm+1,1∗(Xi) = (m+ 1)−2K−2

{
m

K∑
k=1

C∑
c=1

πmck(1− πck)2+

+
∑
k 6=l

C∑
c=1

πck(1− πck)m+1 +m
∑
k 6=l

C∑
c,d=1

πck,dl(1− πck)πm−1
dl (1− πdl)+

+
∑
k 6=l

C∑
c,d=1

πck,dl(1− πck)(1− πdl)

 .
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Finally,

σ2
j+1 = Eψj+1,1(X1)2 −H2

K,j+1,

σj+1,m+1 = Eψj+1,1(X1)ψm+1,1(X1)−HK,j+1HK,m+1,

σ2
j+1∗ = Eψj+1,1∗(X1)2 −H2

K,j+1∗,

σj+1,m+1∗ = Eψj+1,1(X1)ψj+1,1∗(X1)−HK,j+1HK,m+1∗.

We can then write

V ar

 r∑
j=1

wj

(
n

j + 1

)−1 1,n∑
i1,...,ij+1

φj+1(Xi1 , . . . , Xij+1)

+
∞∑
j=2

wj

(
n

j + 1

)−1 1,n∑
i1,...,ij+1

φj+1∗(Xi1 , . . . , Xij+1


=

4

n

 r∑
j=1

w2
j

(j + 1)2
σ2
j+1 +

r∑
j=2

w2
j∗

(j + 1)2
σ2
j+1∗

+2
∑

1≤j<m≤r

wjwm∗
(j + 1)(m+ 1)

σj+1,m+1∗

+O(n−2). (27)

Note that the sums in the RHS of (27) converge as r →∞. Let

Yni = 2

 r∑
j=2

j−1wj [ψj,1(Xi)−HK,j ] ,
r∑
j=2

j−1wj∗ [ψj∗,1(Xi)−HK,j∗]

 .

It is easy to show that(
n∑
i=1

E|Yk,ni − EYl,ni|3
)2

= O(n2) = o(n3) = o

(
n∑
i=1

V ar(Yl,ni)

)3

,

as n→∞, for l = 1, 2 (and r →∞). Therefore,

n−1/2
n∑
i=1

(Yni − EYni)
L→ N(0,Σπ,w,w∗,K),

as n → ∞, r (≤ n − 1) → ∞, and the asymptotic variance of θ̂(π,w,w∗)
is given by

Σπ,w,w∗,K =
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= 4



∞∑
j=1

w2
j

(j + 1)2
σ2
j+1

∑
2≤j<m≤∞

wjwm
(j + 1)(m+ 1)

σj+1,m+1∗

∑
2≤j<m≤∞

wjwm
(j + 1)(m+ 1)

σj+1,m+1∗

∞∑
j=2

w2
j

(j + 1)2
σ2
j+1∗

.
Moreover, each component of Σπ,w,w∗,K converges as K → ∞. Theorem
5.1 summarizes the results for large n.

Theorem 5.1. Let X1, . . . ,Xn be i.i.d. random vectors distributed accord-
ing to the probability distribution π. Suppose that π is such that φj(·) and
φj,∗(·), j = 1, . . . are all nondegenerate kernels. Then,

√
n
(
ĥ(w,w∗,K)− h(π)(π,w,w∗,K)

)
D→ N(0, γ2

π,w,w∗,K),

as n(and r ≤ n − 1) → ∞ but K is limited, where ġ is the gradient of g ,
and

γ2 = ġ(hπ,w,w∗,K)′Σπ,w,w∗,K ġ(hπ,w,w∗,K).

If n(and r ≤ n − 1) → ∞ and K → ∞ such that V ar(ĥ(w,w∗,K)) is of
order O(nv(K) as n,K →∞, then√

v(K)n
(
ĥ(w,w∗,K)− h(π,w,w∗,K)

)
D→ N(0,Σπ,w,w∗,∞),

as n,K(and r ≤ n− 1) →∞, where

Σ(π,w,w∗,∞) = lim
n,K→∞

v(K)Σπ,w,w∗,K .

In the case the sample size is not large but the number of sites (or
characteristics) can be taken as large, under suitable mixing conditions,
one can a similar result but there is a drawback. It forks fine for fixed
degree kernels (Pinheiro et al., 2011), but for symmetric kernels a bias
term which decreases with n will remain.

6. Conclusion

We propose a unified approach to a large class of diversity measures
in the literature. The approach is fully based on symmetric kernels and
U -statistics related procedures. Given the characteristics of these diver-
sity measures, one is able to decompose each one in within and between-
population dissimilarity measures, naturally leading to a homogeneity test.
Moreover, asymptotic normality is proven, under very mild conditions, for
both within and between-population measures.
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