Cohen-Macaulay clutters with combinatorial optimization properties and parallelizations of normal edge ideals

Authors

  • Luis A. Dupont Centro de Investigación y de Estudios Avanzados del IPN Departamento de Matemáticas
  • Rafael H. Villarreal Centro de Investigación y de Estudios Avanzados del IPN Departamento de Matemáticas
  • Enrique Reyes Interdisciplinaria en Ingeniería y Tecnologias Avanzadas del IPN Unidad Profesional Departamento de Ciencias Básicas

DOI:

https://doi.org/10.11606/issn.2316-9028.v3i1p61-75

Abstract

Let

C be a uniform clutter and let I = I(C) be its edge ideal. We prove that if C satisfies the packing property (resp. max-flow min-cut property), then there is a uniform Cohen-Macaulay clutter C1 satisfying the packing property (resp. max-flow min-cut property) such that C is a minor of C1. For arbitrary edge ideals of clutters we prove that the normality property is closed under parallelizations. Then we show some applications to edge ideals and clutters which are related to a conjecture of Conforti and Cornu´ejols and to max-flow min-cut problems. 2000 Mathematics Subject Classification: Primary 13H10; Secondary 13F20, 13B22, 52B20.

Downloads

Download data is not yet available.

Downloads

Published

2009-06-30

Issue

Section

Articles

How to Cite

Cohen-Macaulay clutters with combinatorial optimization properties and parallelizations of normal edge ideals. (2009). The São Paulo Journal of Mathematical Sciences, 3(1), 61-75. https://doi.org/10.11606/issn.2316-9028.v3i1p61-75