Atributos ecológicos de invertebrados aquáticos em dois cenários de turbidez da água em um lago do Pantanal, Brasil

Autores

DOI:

https://doi.org/10.11606/2176-7793/2023.54.05

Palavras-chave:

Invertebrados bentônicos, Grupos Funcionais Alimentares, Chironomidae, Áreas úmidas, Lagoa de Sinhá Mariana

Resumo

O objetivo deste trabalho foi determinar a estrutura taxonômica e os Grupos Alimentares Funcionais (GAFs) dos invertebrados bentônicos e seu papel em dois cenários contrastantes de turbidez da água em uma lagoa do Pantanal (Lagoa de Sinhá Mariana, Barão de Melgaço, Mato Grosso). Estudamos a fauna de invertebrados bentônicos em 18 locais de amostragem em períodos de alta turbidez (HT) e baixa turbidez (LT), durante as águas altas (HW) e águas baixas (LW). Nossa hipótese é que a estrutura das assembleias de Chironomidae (espécies e grupos funcionais de alimentação) varia entre locais na Lagoa de Sinhá Mariana e os atributos de densidade e diversidade das espécies desta família e seus grupos funcionais de alimentação serão reduzidos sob condições de aumento da turbidez da água. Profundidade, temperatura da água, pH, turbidez, oxigênio dissolvido, pCO₂, cor da água, clorofila, composição granulométrica e teor de matéria orgânica do sedimento foram analisados em cada local de amostragem. Nossos dados mostraram que os Chironomidae apresentaram maiores densidades, diversidade, riqueza e índices de dominância em períodos de águas altas (HW) em locais com águas de baixa turbidez (LT). Os principais GAFs foram representadas por coletores-coletores, enquanto os menores corresponderam a trituradores-herbívoros (50% e 9% da abundância total, respectivamente). Coletores-catadores (Aedokritus sp., Chironomus strenzkei, Goeldichironomus petiolicola, G. maculatus, Beardius phytophilus), predadores (Ablabesmyia gr. annulata, Labrundinia sp. e Cryptochironomus brasiliensis) e trituradores-herbívoros (Asheum sp., Polypedilum sp., Polypedilum gr. fallax) predominaram nos períodos de águas altas (HW). Evidenciou-se uma mudança na estrutura da comunidade de HW para LW, caracterizada pela substituição de coletores-catadores por coletores-filtradores. Notodiaptomus deitersi (Crustacea) foi dominante em LW (índice de dominância = 10,9) e Aedokritus sp. (Insecta) em HW (índice de dominância = 5,4). A turbidez da água e o ciclo hidrológico são factores importantes que determinaram os padrões espaciais e temporais nas comunidades, particularmente as mudanças nos GFAs. As mudanças da turbidez em diferentes locais e períodos alteram a estruturação das comunidades tróficas e podem levar às questões sobre os principais direcionadores das comunidades nas áreas úmidas pantaneiras, como áreas de alta relevância ecológica para manutenção da biodiversidade.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Aburaya, F.H. & Callil, C.T. 2007. Variação temporal de larvas de Chironomidae (Diptera) no Alto Rio Paraguai (Cáceres, Mato Grosso, Brasil). Revista Brasileira de Zoologia, 24(3): 565-572. https://doi.org/10.1590/S0101-81752007000300007.

Allen, S.E. 1989. Analysis of Vegetation and Other Organic Materials. In: Allen, S.E. (Ed.). Chemical Analysis of Ecological Materials, Blackwell Scientific Publication, Oxford, 46-61.

Butakka, C.M.M.; Grzybkowska, M.; Pinha, G.D. & Takeda, A.M. 2014. Habitats and trophic relationships of Chironomidae insect larvae from the Sepotuba River basin, Pantanal of Mato Grosso, Brazil. Brazilian Journal of Biology, 74(2): 395-407. https://doi.org/10.1590/1519-6984.26612.

Butakka, C.M.M.; Ragonha, F.H.; Train, S.; Pinha, G.D. & Takeda, A.M. 2016. Chironomidae feeding habits in different habitats from a Neotropical floodplain: exploring patterns in aquatic food webs. Brazilian Journal of Biology, 76(1): 117-125. https://doi.org/10.1590/1519-6984.14614.

Carmouze, J.P. 1994. O metabolismo dos ecossistemas aquáticos. Fundamentos teóricos, métodos de estudo e análises químicas. São Paulo: Edgard Blucher, FAPESP.

Castro, D.M.P.; Hughes, R.M. & Callisto, M. 2013. Effects of flow fluctuations on the daily and seasonal drift of invertebrates in a tropical river. Annales de Limnologie – International. Journal of Limnology, 49: 169-177. https://doi.org/10.1051/limn/2013051.

Coffman, W.P. & Ferrington-Jr., L.C. 2006. Chironomidae. In: Merrit, R.W. (Ed.). An introduction to the Aquatic Insects of North America. Ed. Dubuque: Kendall/Hunt. p. 744-754.

Correa, D.B.; Alcântara, E.; Libonati, R.; Massi, K.G. & Park, E. 2022. Increased burned area in the Pantanal over the past two decades. Science of the Total Environment Volume, 835, 55386. https://doi.org/10.1016/j.scitotenv.2022.155386.

Cummins, K.W. 1973. Trophic relations of aquatic insects. Revista Entomologic,. v. 18. https://doi.org/10.1146/annurev.en.18.010173.001151.

Davies-Colley, R.J. & Smith, D.G. 2007. Turbidity, Suspended Sediment, and Water Clarity: A Review. Jawra Journal of the American Water Resources Association, 37(5): 1085-1101. https://doi.org/10.1111/j.1752-1688.2001.tb03624.x.

Del’Arco, J.O.; da Silva, R.H.; Tarapanoff, I.; Freire, F.A.; Mota Pereira, L.G.; Souza, S.L.; Palmeiras, R.C.B. & Tassinari, C.C.G. 1982. Geologia. Levantamento de Recursos Naturais, Folha SE.21. Corumbá e parte da Folha SE.20. In: Brasil, Ministério das Minas e Energia. S.G. Projeto RADAMBRASIL. Rio de Janeiro. Vol. 27, p. 25-160.

Fantin-Cruz, I.; Loverde-Oliveira, S.M. & Girard, P. 2008. Caracterização morfométrica e suas implicações na limnologia de lagoas do Pantanal Norte. Acta Scientiarum, Biological Sciences, Maringá, v. 30, n. 2, p. 133-140. https://doi.org/10.4025/actascibiolsci.v30i2.3628.

Ferreira, W.R.; Hepp, L.U.; Ligeiro, R.; Macedo, D.R.; Hughes, R.M.; Kaufmann, P.R. & Callisto, M. 2017. Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in neotropical savanna headwater streams. Ecological Indicators, 72: 365-373. https://doi.org/10.1016/j.ecolind.2016.08.042.

Ferreira, W.R.; Ligeiro, R.; Macedo, D.R.; Hughes, R.M.; Kaufmann, P.R.; Oliveira, L.G. & Callisto, M. 2014. Importance of environmental factors for the richness and distribution of benthic macroinvertebrates in tropical headwater streams. Freshwater Science, 33(3): 860-871. https://doi.org/10.1086/676951.

Firmiano, K.R.; Ligeiro, R.; Macedo, D.R.; Juen, L.; Hughes, R.M. & Callisto, M. 2017. Mayfly bioindicator thresholds for several anthropogenic disturbances in neotropical savanna streams. Ecological Indicators, 74: 276-284. https://doi.org/10.1016/j.ecolind.2016.11.033.

Fonseca, J.J.L.; Esteves, F.A.; Furtado, A.L.S.; Bozelli, R.L. & Barros, M.P.F. 2007. The role of Campsurus notatus (Ephemeroptera: Polymitarcytidae) bioturbation and sediment quality on potential gas fluxes in a tropical lake. Hydrobiologia, 586: 143-154. https://doi.org/10.1007/s10750-006-0570-9.

Galina, A.B. & Hahn, N.S. 2009. Comparação da dieta de duas espécies de Triportheus (Characidae, Triportheinae), em trechos do reservatório de Manso e lagoas do rio Cuiabá, Estado do Mato Grosso. Acta Scientiarum, Biological Sciences, 25(2): 345-352.

Gonçalves, F.B. & Menezes, M.S. 2011. A comparative analysis of biotic indices that use macroinvertebrates to assess water quality in a coastal river of Paraná state, southern Brazil. Biota Neotropica, 11(4): 27-36. https://doi.org/10.1590/S1676-06032011000400002.

Graham, J. 1985. Collection and analysis of field data. In: Tucker, M. (Ed.). Techniques in Sedimentology. Oxford: Blackwell Scientific Publications, p. 5-62.

Hamada, N.; Nessimian, J.L. & Querino, R.B. 2014. Insetos Aquáticos na Amazônia Brasileira: Taxonomia, Biologia e Ecologia, 1. ed. Manaus: INPA.

Henriques-Oliveira, A.H. & Nessimian, J.L. 2010. Aquatic macroinvertebrate diversity and composition in streams along an altitudinal gradient in Southeastern Brazil. Biota Neotropica, 10(3): 115-128. https://doi.org/10.1590/S1676-06032010000300012.

Hershey, A.; Lamberti, G.; Chaloner, D.T. & Northington, R. 2010. Aquatic Insect Ecology. 2. ed. In: Ecology and classification of North American freshwater invertebrates. Academic Press: p. 659. https://doi.org/10.1016/B978-0-12-374855-3.00017-0.

Junk, W.J.; Wantzen, K.M.; Nunes da Cunha, C.; Petermann, P.; Strussmann, C.; Marques, M.I. & Adis, J. 2006. Comparative biodiversity value of large wetlands: the Pantanal of Mato Grosso, Brazil. Aquatic Sciences, 63: 278-309. https://doi.org/10.1007/s00027-006-0851-4.

Kownacki, A. 1971. Taxocens of Chironomidae in streams of the Polish High Tatra Mts. Acta Hydrobiologica, 13(4): 439-464.

Lima, F.B.; Schäfer, A.E. & Lanzer, R.M. 2013. Diversity and spatial and temporal variation of benthic macroinvertebrates with respect to the trophic state of Lake Figueira in the South of Brazil. Acta Limnologica Brasiliensia, 25(4): 429-441. https://doi.org/10.1590/S2179-975X2013000400008.

Loverde-Oliveira, S.M. & Huszar, V.L.M. 2007. Phytoplankton ecological responses to the flood pulse in a Pantanal lake, Central Brazil. Acta Limnologica Brasiliensia, 19(2): 117-130.

Loverde-Oliveira, S.M.; Huszar, V.L.M.; Mazzeo, N. & Scheffer, M. 2009. Hydrology-Driven Regime Shifts in a Shallow Tropical Lake. Ecosystems, 12: 807-819. https://doi.org/10.1007/s10021-009-9258-0.

Mandaville, S.M. 2002. Benthic macroinvertebrates in freshwaters – Taxa tolerance values, metrics and protocols. Nova Scotia: Soil & Conservation Society of Metro Halifax.

Mariani, C.F.; Moschini-Carlos, V.; Brandimarte, A.L.; Nishimura, P.Y.; Tófoli, F.; Durani, D.S.; Lourenço, E.M.; Braidotti, J.C.; Almeida, L.P.; Fidalgo, V.H. & Pompêo, M.L.M. 2006. Biota and water quality in the Riacho Grande reservoir, Billings Complex (São Paulo, Brazil). Acta Limnologica Brasiliensia, 18(3): 267-280.

Martins, I.; Sanches, B.; Kaufmann, P.R.; Hughes, R.M.; Santos, G.B.; Molozzi, J. & Callisto, M. 2015. Ecological assessment of a southeastern Brazil reservoir. Biota Neotropica, 15(1): e20140061. https://doi.org/10.1590/1676-06032015006114.

Nunes, J.R.S. & Da-Silva, C.J. 2009. Concentração de íons no sistema de baías Chacororé-Sinhá Mariana, Pantanal de Mato Grosso. UNICiências, 13: 135-158.

Nusch, E.A. & Palme, G. 1975. Biologische Methoden fur die Praxis der Gewasseruntersuchung. GWF-Wasser/Abwasser, 116: 562-5.

Pacheco, E.B. & Da-Silva, C.J. 2009. Fish associated with aquatic macrophytes in the Chacororé-Sinhá Mariana Lake system and Mutum River, Pantanal of Mato Grosso, Brazil. Brazilian Journal of Biology, 69(1): 101-108. https://doi.org/10.1590/S1519-69842009000100012.

Pielou, E.C. 1975. Ecological diversity. New York, John Wiley. 165p.

Ptatscheck, C.; Gansfort, B.; Majdi, N. & Traunspurger, W. 2020. The influence of environmental and spatial factors on benthic invertebrate metacommunities differing in size and dispersal mode. Aquatic Ecology, 54: 447-461. https://doi.org/10.1007/s10452-020-09752-2.

Rezende, C.F. 2007. Estrutura da comunidade de macroinvertebrados associados ao folhiço submerso de remanso e correnteza em igarapés da Amazônia Central. Biota Neotropica, 7(2): 301-305. https://doi.org/10.1590/S1676-06032007000200034.

Santos, M. & Callil, C.T. 2010. Invertebrados Aquáticos. In: Fernandes, I.M.; Signor, C.A.; Penha, J. Biodiversidade no Pantanal de Poconé – Cuiabá. Centro de Pesquisa do Pantanal. Cap. 4, p. 59-71.

Siqueira, T.; Roque, F.O. & Trivinho-Strixino, S. 2008. Species richness, abundance, and body size relationships from a neotropical chironomid assemblage: Looking for patterns. Basic and Applied Ecology, 9: 606-612. https://doi.org/10.1016/j.baae.2007.06.002.

Teixeira-de-Melo, F.; Oliveira, V.A.; Loverde-Oliveira, S.M.; Huszar, V.L.M.; Barquín, J.; Iglesias, C.; Silva, T.S.F.; Duque-Estrada, C.H.; Silió-Calzada, A. & Mazzeo, N. 2015. The structuring role of free-floating plants on the fish community in a tropical shallow lake: an experimental approach with natural and artificial plants. Hydrobiologia, 778(1): 167-178. https://doi.org/10.1007/s10750-015-2447-2.

Trivinho-Strixino, S. 2011. Larvas de Chironomidae. Guia de Identificação. São Carlos, Depto Hidrobiologia/Lab. Entomologia Aquática/UFSCar. 371p.

Trivinho-Strixino, S. 2014. Ordem Diptera. Família Chiromidae. Guia de identificação de larvas. Cap. 26. In: Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia/Editores Neusa Hamada, Jorge Luiz Nessimian, Ranyse Barbosa Querino. Manaus: Editora do INPA, 2014. 724p.

Wantzen, K.M.; Junk, W.J. & Rothhaupt, K.O. 2008. An extension of the floodpulse concept (FPC) for lakes. Hydrobiologia, 613: 151-170. https://doi.org/10.1007/s10750-008-9480-3.

Wantzen, K.M.; Callil, C. & Butakka, C.M.M. 2011. Benthic invertebrates of the Pantanal and its tributaries. In: Junk, W.J.; Da Silva, C.; Nunes da Cunha, C & Wantzen, K.M. The Pantanal: Ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft Publishers. Geo Milev Str. 13a, Sofia 1111, Bulgaria. Capítulo 15. p. 393-430.

Zerlin, R.A. & Henry, R. 2014. Does water level affect benthic macro-invertebrates of a marginal lake in a tropical river-reservoir transition zone? Brazilian Journal of Biology, 74(2): 408-419. https://doi.org/10.1590/1519-6984.26812.

Downloads

Publicado

2023-12-14

Edição

Seção

Artigo Original

Dados de financiamento

Como Citar

Butakka, C. M. de M., & Loverde-Oliveira, S. M. (2023). Atributos ecológicos de invertebrados aquáticos em dois cenários de turbidez da água em um lago do Pantanal, Brasil. Arquivos De Zoologia, 54(5), 121-131. https://doi.org/10.11606/2176-7793/2023.54.05