Mini-Review of Poloxamer as a Biocompatible Polymer for Advanced Drug Delivery

Authors

  • Dwianto Harry Nugraha Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia; Department of Formulation, Research & Development Division, PT. Dankos Farma, Jakarta, Indonesia https://orcid.org/0000-0001-7155-9707
  • Heni Rachmawati Department of Pharmacology & Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
  • Kusnandar Anggadiredja Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia

Keywords:

Poloxamer; Biocompatible; Physicochemical Modification and Biological Response Modification

Abstract

Poloxamer is a biocompatible polymer that has already been approved by the US FDA for multiple applications. Poloxamer itself has many grades and functional categories that enable the improvement of both physicochemical and biological properties of drugs. In this minireview, the functional properties of poloxamer for physicochemical modification, such as solubility and stability, and biological response modification, such as neuroprotection, cell apoptosis, efflux pump modification, membrane cell modification, and cellular uptake, are discussed to provide a broader understanding to assist the development of poloxamer-based formulations.

Downloads

Download data is not yet available.

References

Adnet T, Groo AC, Picard C, Davis A, Corvaisier S, Since M, et al. Pharmacotechnical development of a nasal drug delivery composite nanosystem intended for alzheimer’s disease treatment. Pharmaceutics. 2020;12(3):251. https:// doi.org/10.3390/pharmaceutics12030251

» https:// doi.org/10.3390/pharmaceutics12030251

Akash MSH, Rehman K, Sun H, Chen S. Assessment of release kinetics, stability and polymer interaction of poloxamer 407-based thermosensitive gel of interleukin-1 receptor antagonist. Pharm Dev Technol. 2014;19(3):278-84. https://doi.org/10.3109/10837450.2013.775158

» https://doi.org/10.3109/10837450.2013.775158

Alakhova DY, Kabanov AV. Pluronics and MDR reversal: An update. Mol Pharm. 2014;11(8):2566-78. https://doi.org/10.1021/mp500298q

» https://doi.org/10.1021/mp500298q

Almeida M, Magalhães M, Veiga F, Figueiras A. Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer. J Polym Res. 2018;25(1):31. https://doi.org/10.1007/s10965-017-1426-x

» https://doi.org/10.1007/s10965-017-1426-x

Aoki N, Tamura M, Ohyashiki JH, Sugaya M, Hisatomi H. Poloxamer 188 enhances apoptosis in a human leukemia cell line. Mol Med Rep. 2010;3(4):669-72. https://doi.org/10.3892/mmr_00000314

» https://doi.org/10.3892/mmr_00000314

Bao HJ, Wang T, Zhang MY, Liu R, Dai DK, Wang YQ, et al. Poloxamer-188 attenuates TBI-induced blood-brain barrier damage leading to decreased brain edema and reduced cellular death. Neurochem Res. 2012;37(12):2856-67. https://doi.org/10.1007/s11064-012-0880-4

» https://doi.org/10.1007/s11064-012-0880-4

Batrakova EV, Miller DW, Li S, Alakhov VY, Kabanov a V, Elmquist WF. Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies. J Pharmacol Exp Ther. 2001;296(2):551-7.

Batrakova EV, Kabanov AV. Pluronic Block Copolymers: Evolution of Drug Delivery Concept from Inert Nanocarriers to Biological Response Modifiers. J Control Release. 2008;130(2):98-106. https://doi.org/10.1016/j.jconrel.2008.04.013

» https://doi.org/10.1016/j.jconrel.2008.04.013

Bodratti AM, Alexandridis P. Formulation of poloxamers for drug delivery. J Funct Biomater. 2018;9(1):11. https://doi.org/10.3390/jfb9010011

» https://doi.org/10.3390/jfb9010011

Ćirin D, Krstonošić V, Poša M. Properties of poloxamer 407 and polysorbate mixed micelles: Influence of polysorbate hydrophobic chain. J Ind Eng Chem. 2017;47:194-201. https://doi.org/10.1016/j.jiec.2016.11.032

» https://doi.org/10.1016/j.jiec.2016.11.032

Dong H, Qin Y, Huang Y, Ji D, Wu F. Poloxamer 188 rescues MPTP-induced lysosomal membrane integrity impairment in cellular and mouse models of Parkinson’s disease. Neurochem Int. 2019;126:178-86. https://doi.org/10.1016/j.neuint.2019.03.013

» https://doi.org/10.1016/j.neuint.2019.03.013

Dugar RP, Gajera BY, Dave RH. Fusion Method for Solubility and Dissolution Rate Enhancement of Ibuprofen Using Block Copolymer Poloxamer 407. AAPS PharmSciTech. 2016;17(6):1428-40. https://doi.org/10.1208/s12249-016-0482-6

» https://doi.org/10.1208/s12249-016-0482-6

Dutra LMU, Ribeiro MENP, Cavalcante IM, De Brito DHA, De Moraes Semião L, Da Silva RF, et al. Binary mixture micellar systems of F127 and P123 for griseofulvin solubilisation. Polimeros. 2015;25(5):433-9. https://doi.org/10.1590/0104-1428.1831

» https://doi.org/10.1590/0104-1428.1831

Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the Blood-Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. Adv Mater. 2018;30(46):e1801362. https://doi.org/10.1002/adma.201801362

» https://doi.org/10.1002/adma.201801362

Gaikwad VL, Bhatia MS. Polymers influencing transportability profile of drug. Saudi Pharm J. 2013;21(4):327-35. https://doi.org/10.1016/j.jsps.2012.10.003

» https://doi.org/10.1016/j.jsps.2012.10.003

Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. J Control Release . 2012;159(3):312-23. https://doi.org/10.1016/j.jconrel.2011.12.012

» https://doi.org/10.1016/j.jconrel.2011.12.012

Gu J, Hao J, Fang X, Sha X. Factors influencing the transfection efficiency and cellular uptake mechanisms of Pluronic P123-modified polypropyleneimine/pDNA polyplexes in multidrug resistant breast cancer cells. Colloids Surfaces B Biointerfaces. 2016;140:83-93. https://doi.org/10.1016/j.colsurfb.2015.12.023

» https://doi.org/10.1016/j.colsurfb.2015.12.023

Gu JH, Ge JB, Li M, Xu HD, Wu F, Qin ZH. Poloxamer 188 Protects Neurons against Ischemia/Reperfusion Injury through Preserving Integrity of Cell Membranes and Blood Brain Barrier. PLoS One. 2013;8(4):e61641. https://doi.org/10.1371/journal.pone.0061641

» https://doi.org/10.1371/journal.pone.0061641

Ha JM, Kang SY, Park CW, Bin SA, Rhee YS, Seo JW, et al. Effect of poloxamer on physicochemical properties of tacrolimus solid dispersion improving water solubility and dissolution rate. J Pharm Investig. 2012;42(4):171-6. https://doi.org/10.1007/s40005-012-0025-4

» https://doi.org/10.1007/s40005-012-0025-4

Jeong B. Injectable biodegradable materials. Inject Biomater. 2011:323-37. https://doi.org/10.1533/9780857091376.3.323

» https://doi.org/10.1533/9780857091376.3.323

Kreidel RN, Duque MD, Serra CHR, Velasco MVR, Baby AR, Kaneko TM, et al. Dissolution Enhancement and Characterization of Nimodipine Solid Dispersions with Poloxamer 407 or PEG 6000. J Dispers Sci Technol. 2012;33(9):1354-9. https://doi.org/10.1080/01932691.2011.605663

» https://doi.org/10.1080/01932691.2011.605663

Kulkarni SA, Feng SS. Effects of surface modification on delivery efficiency of biodegradable nanoparticles across the blood-brain barrier. Nanomedicine. 2011;6(2):377-94. https://doi.org/10.2217/nnm.10.131

» https://doi.org/10.2217/nnm.10.131

Kwiatkowski TA, Rose AL, Jung R, Capati A, Hallak D, Yan R, et al. Multiple poloxamers increase plasma membrane repair capacity in muscle and non-muscle cells. Am J Physiol Cell Physiol. 2020;318(2):C253-62. https://doi: 10.1152/ajpcell.00321.2019

» https://doi: 10.1152/ajpcell.00321.2019

Li J, Chu MK, Lu B, Mirzaie S, Chen K, Gordijo CR, et al. Enhancing thermal stability of a highly concentrated insulin formulation with Pluronic F-127 for long-term use in microfabricated implantable devices. Drug Deliv Transl Res. 2017;7(4):529-43. https://doi.org/10.1007/s13346-017-0381-8

» https://doi.org/10.1007/s13346-017-0381-8

Li Z, Huang Y, Peng S, Chen X, Zou L, Liu W, et al. Liposomes consisting of pluronic F127 and phospholipid: Effect of matrix on morphology, stability and curcumin delivery. J Dispers Sci Technol . 2020a;41(2):207-13. https://doi.org/10.1080/01932691.2018.1562353

» https://doi.org/10.1080/01932691.2018.1562353

Li Z, Xiong X, Peng S, Wu G, Liu W, Liu C. Effect of pluronic block composition on the structure, stability, and cytotoxicity of liposomes. J Dispers Sci Technol . 2020b;0:1-9. https://doi.org/10.1080/01932691.2020.1776130

» https://doi.org/10.1080/01932691.2020.1776130

Medarević DP, Kachrimanis K, Mitrić M, Djuriš J, Djurić Z, Ibrić S. Dissolution rate enhancement and physicochemical characterization of carbamazepine-poloxamer solid dispersions. Pharm Dev Technol . 2016;21(3):268-76. https://doi.org/10.3109/10837450.2014.996899

» https://doi.org/10.3109/10837450.2014.996899

Meng X, Liu J, Yu X, Li J, Lu X, Shen T. Pluronic F127 and D-α-Tocopheryl Polyethylene Glycol Succinate (TPGS) mixed micelles for targeting drug delivery across the blood brain barrier. Sci Rep. 2017;7(1):1-12. https://doi.org/10.1038/s41598-017-03123-y

» https://doi.org/10.1038/s41598-017-03123-y

Mirhosseini MM, Haddadi-Asl V, Zargarian SS. Fabrication and characterization of polymer-ceramic nanocomposites containing pluronic F127 immobilized on hydroxyapatite nanoparticles. RSC Adv. 2016;6(84):80564-75. https://doi.org/10.1039/c6ra19499k

» https://doi.org/10.1039/c6ra19499k

Pitto-Barry A, Barry NPE. Pluronic® block-copolymers in medicine: From chemical and biological versatility to rationalisation and clinical advances. Polym Chem. 2014;5(10):3291-7. https://doi.org/10.1039/c4py00039k

» https://doi.org/10.1039/c4py00039k

Rahman MM, Moniruzzaman M, Haque S, Azad MAK, Islam Aovi F, Ahmeda Sultana N. Effect of Poloxamer on release of poorly water soluble drug Loratadine from solid dispersion: Kneading method. Maced Pharm Bull. 2015;61(1):45-50. https://doi.org/10.33320/maced.pharm.bull.2015.61.01.001

» https://doi.org/10.33320/maced.pharm.bull.2015.61.01.001

Rowe RC, Sheskey PJ, Quinn ME. Handbook of Pharmaceutical Excipients, Sixth Edition. Pharmaceutical Press. 2009; p.506-509.

Rudt S, Müller RH. In vitro phagocytosis assay of nano- and microparticles by chemiluminescence. III. Uptake of differently sized surface-modified particles, and its correlation to particle properties and in vivo distribution. Eur J Pharm Sci. 1993;1(1):31-9. https://doi.org/10.1016/0928-0987(93)90015-3

» https://doi.org/10.1016/0928-0987(93)90015-3

Sahay G, Batrakova EV, Kabanov AV. Different internalization pathways of polymeric micelles and unimers and their effects on vesicular transport. Bioconjug Chem. 2008;19(10):2023-9. https://doi.org/10.1021/bc8002315

» https://doi.org/10.1021/bc8002315

Santander-Ortega MJ, Jódar-Reyes AB, Csaba N, Bastos- González D, Ortega-Vinuesa JL. Colloidal stability of Pluronic F68-coated PLGA nanoparticles: A variety of stabilisation mechanisms. J Colloid Interface Sci. 2006;302(2):522-9. https://doi.org/10.1016/j.jcis.2006.07.031

» https://doi.org/10.1016/j.jcis.2006.07.031

Serbest G, Horwitz J, Jost M, Barbee KA. Mechanisms of cell death and neuroprotection by poloxamer 188 after mechanical trauma. FASEB J. 2006;20(2):308-10. https://doi.org/10.1096/fj.05-4024fje

» https://doi.org/10.1096/fj.05-4024fje

Singla P, Singh O, Sharma S, Betlem K, Aswal VK, Peeters M, et al. Temperature-Dependent Solubilization of the Hydrophobic Antiepileptic Drug Lamotrigine in Different Pluronic Micelles - A Spectroscopic, Heat Transfer Method, Small-Angle Neutron Scattering, Dynamic Light Scattering, and in Vitro Release Study. ACS Omega. 2019;4(6):11251-62. https://doi.org/10.1021/acsomega.9b00939

» https://doi.org/10.1021/acsomega.9b00939

Song CK, Balakrishnan P, Shim CK, Chung SJ, Kim DD. Enhanced in-vitro cellular uptake of P-gp substrate by poloxamer-modified liposomes (PMLs) in MDR cancer cells. J Microencapsul. 2011;28(6):575-81. https://doi.org/10.3109/02652048.2011.599436

» https://doi.org/10.3109/02652048.2011.599436

Szafraniec J, Antosik A, Knapik-Kowalczuk J, Chmiel K, Kurek M, Gawlak K, et al. The self-assembly phenomenon of poloxamers and its effect on the dissolution of a poorly soluble drug from solid dispersions obtained by solvent methods. Pharmaceutics. 2019;11(3):130. https://doi.org/10.3390/pharmaceutics11030130

» https://doi.org/10.3390/pharmaceutics11030130

Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC. Threedistinctrolesofaquaporin-4inbrainfunctionrevealed by knockout mice. Biochim Biophys Acta. 2006;1758(8):1085-93. https://doi.org/10.1016/j.bbamem.2006.02.018

» https://doi.org/10.1016/j.bbamem.2006.02.018

Wang T, Chen X, Wang Z, Zhang M, Meng H, Gao Y, et al. Poloxamer-188 Can Attenuate Blood-Brain Barrier Damage to Exert Neuroprotective Effect in Mice Intracerebral Hemorrhage Model. J Mol Neurosci. 2014;55(1):240-50. https://doi.org/10.1007/s12031-014-0313-8

» https://doi.org/10.1007/s12031-014-0313-8

Yang X, Yang R, Chen M, Zhou Q, Zheng Y, Lu C, et al. KGF-2 and FGF-21 poloxamer 407 hydrogel coordinates inflammation and proliferation homeostasis to enhance wound repair of scalded skin in diabetic rats. BMJ Open Diabetes Res Care. 2020;8(1):1-13. https://doi.org/10.1136/bmjdrc-2019-001009

» https://doi.org/10.1136/bmjdrc-2019-001009

Yang Z, Sahay G, Sriadibhatla S, Kabanov AV. Amphiphilic Block Copolymers Enhance Cellular Uptake and Nuclear Entry of Polyplex-Delivered DNA. Bioconjug Chem . 2008;19(10):1987-94. https://doi.org/10.1021/bc800144a

» https://doi.org/10.1021/bc800144a

Zarrintaj P, Ramsey JD, Samadi A, Atoufi Z, Yazdi MK, Ganjali MR, et al. Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomater. 2020;110:37-67. https://doi.org/10.1016/j.actbio.2020.04.028

» https://doi.org/10.1016/j.actbio.2020.04.028

Downloads

Published

2023-01-16

Issue

Section

Review

How to Cite

Mini-Review of Poloxamer as a Biocompatible Polymer for Advanced Drug Delivery. (2023). Brazilian Journal of Pharmaceutical Sciences, 58, 8. https://periodicos.usp.br/bjps/article/view/207733