Vesículas extracelulares: o que sabemos até agora

Autores

  • Heloísa Nelson Cavalcanti Universidade Federal do Rio Grande do Norte
  • Tiago João da Silva Filho Universidade Estadual da Paraíba
  • Lélia Maria Guedes Queiroz Universidade Federal do Rio Grande do Norte

DOI:

https://doi.org/10.11606/issn.2357-8041.clrd.2021.180055

Palavras-chave:

Vesículas extracelulares, Exossomas, Comunicação celular

Resumo

Com base em uma revisão de literatura, este estudo teve como objetivo abordar e esclarecer alguns conceitos referente às vesículas extracelulares (VE) e sua nomenclatura. Realizou-se uma busca por artigos científicos e revisões bibliográficas relativos às VE publicados de 2010 a 2021 em língua inglesa nas bases de dados eletrônicas Scielo, Lilacs e Medline/PubMed. Trinta e três artigos pertinentes ao tema foram selecionados para compor esse estudo. VE são partículas nano/micrométricas, delimitadas por uma membrana celular e produzidas por organismos vivos, que desempenham um papel importante na comunicação celular. Dentre as principais classes de VE, encontram-se os exossomos, microvesículas e corpos apoptóticos. Contudo, essas vesículas compartilham algumas características comuns, dificultando sua caracterização. Embora diversos estudos tenham tentado isolar os diferentes tipos de VE, ainda não há métodos eficazes de purificação nem marcadores específicos. Com base na literatura atual, o presente artigo reforça a importância de uma descrição detalhada acerca dos métodos de isolamento e caracterização em estudos que se utilizam de VE. Além disso, de modo a tentar reduzir possíveis vieses e facilitar a comparação entre estudos, sugere também que se padronize o uso do termo “VE” em detrimento a termos mais específicos.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Heloísa Nelson Cavalcanti, Universidade Federal do Rio Grande do Norte

    Departamento de Odontologia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brasil

  • Tiago João da Silva Filho, Universidade Estadual da Paraíba

    Departamento de Odontologia, Universidade Estadual da Paraíba (UEPB), Campina Grande, PB, Brasil

  • Lélia Maria Guedes Queiroz, Universidade Federal do Rio Grande do Norte

    Departamento de Odontologia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brasil

Referências

Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373-83. doi: 10.1083/jcb.201211138

Beyer C, Pisetsky DS. The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol. 2010;6(1):21-9. doi: https://doi.org/10.1038/nrrheum.2009.229

Pant S, Hilton H, Burczynski ME. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem Pharmacol. 2011;83(11):1484-94. doi: https://doi.org/10.1016/j.bcp.2011.12.037

Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics. 2010;73(10):1907-20. doi: https://doi.org/10.1016/j.jprot.2010.06.006

Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913. doi: https://doi.org/10.3402/jev.v3.26913

Correa R, Caballero Z, De León LF, Spadafora C. Extracellular vesicles could carry an evolutionary footprint in interkingdom communication. Front Cell Infect Microbiol. 2020;10:76. doi: https://doi.org/10.3389/fcimb.2020.00076

Liu Y, Fan J, Xu T, Ahmadinejad N, Kenneth H, Lin SH, et al. Extracellular vesicle tetraspanin-8 level predicts distant metastasis in non-small cell lung cancer after concurrent chemoradiation. Sci Adv. 2020;6(11):eaaz6162. doi: https://doi.org/10.1126/sciadv.aaz6162

Gonda DD, Akers JC, Kim R, Kalkanis SN, Hochberg FH, Chen CC, et al. Neuro-oncologic applications of exosomes, microvesicles, and other nano-sized extracellular particles. Neurosurgery. 2012;72(4):501-10. doi: https://doi.org/10.1227/NEU.0b013e3182846e63

Andaloussi SEL, Mäger I, Breakefield XO, Wood MJA. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347-57. doi: https://doi.org/10.1038/nrd3978

Ogorevc E, Kralj-Iglic V, Veranic V. The role of extracellular vesicles in phenotypic cancer transformation. Radiol Oncol. 2013;47(3):197-205. doi: https://doi.org/10.2478/raon-2013-0037

Wiklander OPB, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mäger I, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles. 2015;4:26316. doi: https://doi.org/10.3402/jev.v4.26316

Yuan L, Li JY. Exosomes in Parkinson’s disease: current perspectives and future challenges. ACS Chem Neurosci. 2019;10(2):964-72. doi: https://doi.org/10.1021/acschemneuro.8b00469

György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68(16):2667-88. doi: https://doi.org/10.1007/s00018-011-0689-3

Casado-Díaz A, Quesada-Gómez JM, Dorado G. Extracellular vesicles derived from mesenchymal stem cells (MSC) in regenerative medicine: applications in skin wound healing. Front Bioeng Biotechnol. 2020;8(146):1-19. doi: https://doi.org/10.3389/fbioe.2020.00146

Yáñez-Mó M, Siljander PRM, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. doi: https://doi.org/10.3402/jev.v4.27066

Shukla L, Yuan Y, Shayan R, Greening DW, Karnezis T. Fat therapeutics: the clinical capacity of adipose-derived stem cells and exosomes for human disease and tissue regeneration. Front Pharmacol. 2020;11:158. doi: https://doi.org/10.3389/fphar.2020.00158

Kurian TK, Banik S, Gopal D, Chakrabarti S, Mazumder N. Elucidating methods for isolation and quantification of exosomes: a review. Mol Biotechnol. 2021;63(4)249-66. doi: https://doi.org/10.1007/s12033-021-00300-3

Bister N, Pistono C, Huremagic B, Jolkkonen J, Giugno R, Malm T. Hypoxia and extracellular vesicles: a review on methods, vesicular cargo and functions. J Extracell Vesicles. 2020;10(1):e12002. doi: https://doi.org/10.1002/jev2.12002

Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018; 7(1): 1-47. doi: https://doi.org/10.1080/20013078.2018.1535750.

Liangsupree T, Multia E, Riekkola ML. Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A. 2021;1636:461773. doi: https://doi.org/10.1016/j.chroma.2020.461773

Principe S, Hui ABY, Bruce J, Sinha A, Liu FF, Kislinger T. Tumor-derived exosomes and microvesicles in head and neck cancer: implications for tumor biology and biomarker discovery. Proteomics. 2013;13(10-11):1608-23. doi: https://doi.org/10.1002/pmic.201200533

Borges FT, Reis LA, Schor N. Extracellular vesicles: structure, function, and potential clinical uses in renal diseases. Braz J Med Biol Res. 2013;46(10):824-30. doi: https://doi.org/10.1590/1414-431X2013296

Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255-89. doi: https://doi.org/10.1146/annurev-cellbio-101512-122326

Benito-Martin A, Di Giannatale A, Ceder S, Peinado H. The new deal: a potential role for secreted vesicles in innate immunity and tumor progression. Front Immunol. 2015;6(66):66-79. doi: https://doi.org/10.3389/fimmu.2015.00066

Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, et al. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol. 2016;428(4):688-92. doi: https://doi.org/10.1016/j.jmb.2015.09.019

Huang B, Huang LF, Zhao L, Zeng Z, Wang X, Cao D, et al. Microvesicles (MIVs) secreted from adipose-derived stem cells (ADSCs) contain multiple microRNAs and promote the migration and invasion of endothelial cells. Genes Dis. 2019;7(2):225-34. doi: https://doi.org/10.1016/j.gendis.2019.04.005

Ren S, Chen J, Duscher D, Liu Y, Guo G, Kang Y, et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways. Stem Cell Res Ther. 2019;10(1):47. doi: https://doi.org/10.1186/s13287-019-1152-x

Tran TH, Mattheolabakis G, Aldawsari H, Amiji M. Exosomes as nanocarriers for immunotherapy of cancer and Inflammatory diseases. Clin Immunol. 2015;160(1):46-58. doi: https://doi.org/10.1016/j.clim.2015.03.021

Bobrie A, Colombo M, Raposo G, Théry C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12(12):1659-68. doi: https://doi.org/10.1111/j.1600-0854.2011.01225.x

Ludwig AK, Giebel B. Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol. 2012;44(1);11-5. doi: https://doi.org/10.1016/j.biocel.2011.10.005

Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett. 2011;315(1):28-37. doi: https://doi.org/10.1016/j.canlet.2011.10.002

Kowal J, Mercedes T, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116-25. doi: https://doi.org/10.1016/j.ceb.2014.05.004

Sehrawat TS, Arab JP, Liu M, Amrollahi P, Wan M, Fan J et al. Circulating extracellular vesicles carrying sphingolipid cargo for the diagnosis and dynamic risk profiling of alcoholic hepatitis. Hepatology. 2021;73(2)571-85. doi: https://doi.org/10.1002/HEP.31256

Downloads

Publicado

2021-08-16

Edição

Seção

Revisão de literatura