Pandemia, biodiversidade, mudanças globais e bem-estar humano
DOI:
https://doi.org/10.1590/s0103-4014.2020.34100.006Keywords:
Sars-CoV-2, Covid-19, Origin, Transmission scenarios, One HealthAbstract
The planet is going through different, intertwined crises in the environmental, economic, and health dimensions, and are aggravated by a crisis in governance. But so many simultaneous crises also offer humanity the rare opportunity to redirect its development efforts toward a more sustainable model that uses less fossil fuels and makes less predatory use of natural resources. Viruses are a component of biodiversity and the most abundant biological entities on Earth. In megadiverse countries like Brazil, with high degrees of social vulnerability and environmental degradation, there is a high probability that new pathogens living in wild species will jump to human hosts. This is largely dependent on transmission scenarios, which are highly favorable in the wet markets of Asian countries, and much less so in the popular markets of Brazil, either because of our traditions in game meat consumption or because of our low population density when compared to Asian countries. In Brazil, expanding contact with new and unknown viruses is much more due to the continuous acceleration of the destruction of our biomes, and to the reduction, fragmentation and loss of habitats.. With regard to the harmful synergy between global climate change and species extinction rates, Homo sapiens has been the only species on the planet responsible for the pandemics of the last century and for the current Covid-19 pandemics. If, on one hand, biodiversity is the origin of viruses, undoubtedly it is also a great pharmacy and can be the source of new antimicrobials and antivirals. Nowadays, biodiversity is the origin of a great range of molecules for antivirals used in the treatment of HIV, herpes, hepatitis B and C, and influenza A and B. Currently, there are about 40 internationally approved compounds, but they are involved in the therapy of only 10 viruses. The situation is even more critical in the case of neglected diseases, where, due to lack of economic interest, there are not even continuous lines of research. Despite all the losses and instabilities experienced today, it is possible to see that the moment also allows us to learn from Covid-19, particularly in recognizing the existing link between biodiversity, ecosystem services, and human health.
Downloads
References
ADAMS, C. et al. Governança ambiental no Brasil: acelerando em direção aos objetivos
de desenvolvimento sustentável ou olhando pelo retrovisor? Cadernos Gestão Pública
e Cidadania, v.25, n.81. Disponível em: <http://bibliotecadigital.fgv.br/ojs/index.
php/cgpc/article/view/81403>. Acesso em: set. 2020.
AGÊNCIA BRASIL. Doença desconhecida causa morte em Minas Gerais. Publicado
em 9.1.2020 – 7h39 por Gésio Passos - Repórter da Rádio Nacional de Brasília – Brasília. Disponível em: <https://agenciabrasil.ebc.com.br/saude/noticia/2020-01/doenca-desconhecida-causa-morte-em-minas-gerais 09/01/2020>. Acesso em: set. 2020.
AGUIRRE, A. A. et al. Illicit Wildlife Trade, Wet Markets, and Covid-19: Preventing
Future Pandemics. 2020. World Med Health Policy, v.12, n.3, p.256-65, 2020. https://
doi.org/10.1002/wmh3.348.
ANDREAZZI, C. S. et al. Brazil´s Covid-19 response. The Lancet, v.396, n.10254,
E31, 2020. https://doi.org/10.1016/S0140-6736(20)31920-6.
BATALLA, L. L. et al. Presencia de hemoparásitos en tortugas motelo (Chelonoides
denticulata) (Linnaeus, 1766) comercializadas en el Mercado de Belén, Iquitos, Perú.
Revista de Investigaciones Veterinarias del Perú, v.26, n.3, p.489-96, 2015. http://
dx.doi.org/10.15381/rivep.v26i3.11168.
BONILLA-ALDANA, D. K. et al. Brazil burning! What is the potential impact of the
Amazon wildfires on vector-borne and zoonotic emerging diseases? – A statement from
an international experts meeting. Travel Medicine and Infectious Disease, v.31, 2019.
https://doi.org/10.1016/j.tmaid.2019.101474.
BONILLA-ALDANA, D. K. et al. Revisiting the One Health Approach in the Context
of Covid-19: A Look into the Ecology of this Emerging Disease. Advances in Animal
and Veterinary Sciences, v.8, n.3, p.234-7, 2020. http://dx.doi.org/10.17582/journal.aavs/2020/8.3.234.237.
BOWLER, D. E. et al. Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People and Nature, v.2, n.2, p.380-94. 2020.
https://doi.org/10.1002/pan3.10071.
BPBES. 1° Diagnóstico Brasileiro de Biodiversidade e Serviços Ecossistêmicos. Ed. Joly C.
A. et al. São Carlos: Editora Cubo, 2019. p.351. https://doi.org/10.4322/978-85-
-88-5.
CALIXTO, J. B. Biodiversidade como fonte de medicamentos. Ciência e Cultura, v.55,
n.3, p.37-9, 2003.
CAMPOS, T. L. et al. Revisiting Key Entry Routes of Human Epidemic Arboviruses
into the Mainland Americas through Large-Scale Phylogenomics. International Journal of Genomics, 2018. https://doi.org/10.1155/2018/6941735.
CBD/Secretariat of the Convention on Biological Diversity. Global Biodiversity Outlook 5. Montreal, Canada, 212 pages, 2020. Disponível em https://www.cbd.int/
gbo/gbo5/publication/gbo-5-en.pdf Acesso em: set. 2020.
CLOSOSKI, G. C. et al. Tenofovir Disoproxil Fumarate: new chemical developments
and encouraging in vitro biological results for Sars-CoV-2. Journal Brazilian Chemistry Society, v.31, n.8, p.1552-1556, 2020. http://dx.doi.org/10.21577/0103-
20200106.
DASZAK, P. et al. A Strategy to Prevent Future Epidemics Similar to the 2019 NCoV
Outbreak. Biosafety and Health, v.2, n.1, p.6-8, 2020. https://doi.org/10.1016/j.
bsheal.2020.01.003
DENARO, M. et al. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytotherapy Research, v.34, n.4, p.742-68, 2019. https://doi.
org/10.1002/ptr.6575.
FEARS, R. et al. Post-pandemic recovery: use of scientific advice to achieve social equity, planetary health, and economic benefits. The Lancet – Planetary Health, v.4, n 9,
e383–e384, 2020. https://doi.org/10.1016/S2542-5196(20)30176-5.
FERREIRA, E. B.; MATOS, M. I. S. Pelos interiores - a invenção do caipira: cultura, tradição e cozinha. Revista Tempo e Argumento, v.11, n.27, 2019. Disponível em:
www.revistas.udesc.br/index.php/tempo/article/view/2175180311272019192>.
Acesso em: set. 2020.
FONSECA, L. X. et al. Magnitude e distribuição dos óbitos por hantavirose no Brasil,
-2015. Epidemiologia e Serviços de Saúde, v.27, n.2, e2017221, 2018. https://
doi.org/10.5123/S1679-49742018000200011.
GERMÁN, V.; RÍOS, D. Impacto ambiental del tráfico ilegal de animales silvestres em
Iquitos, Perú. Revista ECIPerú, v.15, n.1, p.1-13, 2018.
GIBB, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature, v.584, p.398-402, 2020. https://doi.org/10.1038/s41586-020-2562-8
GUEDES, L. S. et al. Atualização do perfil epidemiológico da hantavirose no Brasil. Revista Contexto & Saúde, v.19, n.36, p.127-32, 2019 http://dx.doi.org/10.21527/2176-
2019.36.127-132.
HIGUERA, A.; RAMÍREZ, J.D. Molecular epidemiology of dengue, yellow fever,
Zika and Chikungunya arboviruses: An update. Acta Tropica, v.190, p.99-111, 2018.
https://doi.org/10.1016/j.actatropica.2018.11.010.
IPBES. Summary for policymakers of the global assessment report on biodiversity and
ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services. Ed. S. Díaz et al. IPBES secretariat, Bonn, Germany. 2019a,
pages. https://doi.org/10.5281/zenodo.3553579.
IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Ed. E. S.
Brondizio et al. IPBES secretariat, Bonn, Germany, 2019b. Disponível em:
ipbes.net/global-assessment>. Acesso em: set. 2020.
JOLY, C. A.; BOLZANI, V.S. The Challenge of Including Chemodiversity, and the
Potential Economic Use of New Natural Compounds and Processes. Journal of the Brazilian Chemical Society, v.20, n.3, p.391-2, 2017. http://dx.doi.org/10.21577/0103-
20160320.
KRUPOVIC, M. et al. Origin of viruses: primordial replicators recruiting capsids from
hosts. Nature Reviews Microbiology, v.17, p.449-58, 2019.
LE, T. T. et al. The Covid-19 vaccine development landscape. Nature Reviews Drug
Discovery, v.19, p.305-6, 2020. https://doi.org/10.1038/d41573-020-00073-5
LINNAKOSKI, R. et al. Antiviral Agents From Fungi: Diversity, Mechanisms and
Potential Applications. Frontiers of Microbiology, v.9, p.2325, 2018. https://doi.
org/10.3389/fmicb.2018.02325.
LOEFFELHOLZ, M. J.; FENWICK, B. W. Taxonomic Changes for Human and
Animal Viruses, 2018 to 2020. Journal of Clinical Microbiology, 2020. https://doi.
org/10.1128/JCM.01932-20.
LYNTERIS, C. The Prophetic Faculty of Epidemic Photography: Chinese Wet Markets
and the Imagination of the Next Pandemic. Visual Anthropology, v.29, n.2, p.118-32,
https://doi.org/10.1080/08949468.2016.1131484.
MAYERA, S. V. et al.; The emergence of arthropod-borne viral diseases: A globalprospective on dengue, chikungunya and zika fevers. Acta Tropica, v.166, p.155-63, 2017.
http://dx.doi.org/10.1016/j.actatropica.2016.11.020.
MAYOR, P. et al. Assessing the minimum sampling effort required to reliably monitor
wild meat trade in urban markets. Frontiers in Ecology and Evolution, v.7, e180, 2019
https://doi.org/10.3389/fevo.2019.00180.
MENDES, F. L. S. Comercialización ilegal de carne de animales salvajes en mercados
abiertos en algunas ciudades del estado de Amazonas (Brasil). Revista Colombiana de
Ciencia Animal, v.12, n.2. Disponível em: <https://recia.edu.co/index.php/recia/
article/view/e765>. Acesso em: set. 2020.
NUWER, R. To Prevent Next Coronavirus, Stop the Wildlife Trade, Conservationists
Say. New York Times. 2020. Disponível em: <https://www.nytimes.com/2020/02/19/
health/coronavirus-animals-markets.html>. Acesso em: set. 2020.
O’NEILL, K.; HAAS, P. M. Being There: International Negotiations as Study Sites in
Global Environmental Politics. Global Environmental Politics, v.19, n.2, p.4-13, 2019.
https://doi.org/10.1162/glep_a_00505.
PAIXÃO, E. S. et al. Zika, chikungunya and dengue: the causes and threats of new and
re-emerging arboviral diseases. BMJ Global Health, v.3, Supl. 1, 2018. http://dx.doi.
org/10.1136/bmjgh-2017-000530.
PEREIRA, L. M. et al. Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework. People and Nature. 2020. https://doi.
org/10.1002/pan3.10146.
PERROTA, A. P. Serpentes, morcegos, pangolins e ‘mercados úmidos’ chineses: Uma
crítica da construção de vilões epidêmicos no combate à Covid-19. DILEMAS: Revista
de Estudos de Conflito e Controle Social, p.1-6, 2020. Disponível em:
ufrrj.br/wp-content/uploads/2020/04/PERROTA-Serpentes-morcegos-pangolinsFI.pdf>. Acesso em: set. 2020.
PONS, G. et al. After: A Green Recovery for a Post-COVID-19 World. SAIS Review
of International Affairs, v.40, n.1, p.69-79, 2020. Disponível em: <https://muse.jhu.
edu/article/763655>. Acesso em: set. 2020.
PRIST, P. R. et al. Landscape, Environmental and Social Predictors of Hantavirus Risk
in São Paulo, Brazil. PlosOne, v.11, n.10 e0163459, 2016. https://doi.org/10.1371/
journal.pone.0163459.
RAJESWARA, R. B. R. et al. Biodiversity, conservation and cultivation of medicinal plants. Journal of Pharmacognosy, v.3, n.2, p.59-62, 2012. https://doi.
org/10.13140/2.1.2927.4247.
RIPPLE, W. J. et al. World Scientists’ Warning of a Climate Emergency. BioScience,
v.70, n.1, p.8-12, 2019. https://doi.org/10.1093/biosci/biz088.
SALATA, C. Antiviral activity of cationic amphiphilic drugs. Expert Review of Anti-
-infective Therapy, v.15, n.5, p.483-92, 2017. https://doi.org/10.1080/14787210.2
1305888.
SECRETARIAT OF THE CONVENTION ON BIOLOGICAL DIVERSITY. Global
Biodiversity Outlook 5 – Summary for Policy Makers. Montreal, Canada. 19 pages, 2020.
Disponível em: <https://www.cbd.int/gbo/gbo5/publication/gbo-5-spm-en.pdf>.
SETTELE, J. et al. Covid-19 Stimulus measures must save lives, protect livelihoods,
and safeguard nature to reduce the risk of future pandemics. IPBES Expert Guest
Article. Disponível em: <https://ipbes.net/covid19stimulus>. Acesso em: set. 2020
SILVA JUNIOR, C. H. L. et al. Benchmark maps of 33 years of secondary forest age
for Brazil. Scientific Data, v.7, n.269, (2020. https://doi.org/10.1038/s41597-020-
-4.
TOLLEFSON, J. Why deforestation and extinctions make pandemics more likely. Nature, v.584, p.175-6, 2020. https://doi.org/10.1038/d41586-020-02341-1.
VALLI, M. et al. The potential contribution of the natural products from Brazilian
biodiversity to bioeconomy. Anais da Academia Brasileira de Ciências, v.90; Suppl. 1,
p.763-78. 2018. http://dx.doi.org/10.1590/0001-3765201820170653.
VELLEND, M. The Biodiversity Conservation Paradox. American Scientist, v.105, n.2,
http://dx.doi.org/10.1511/2017.105.2.94.
VITTOR, A. Y. et al. How deforestation helps deadly viruses jump from animals to
humans. The Conversation. Disponível em: <https://theconversation.com/how-deforestation-helps-deadly-viruses-jump-from-animals-to-humans-139645>. Acesso em:
set. 2020.
WWF. Living Planet Report 2020 - Bending the curve of biodiversity loss. Ed. Almond, R. E. A. et al. Switzerland: WWF, Gland, 2020. 83p. Disponível em:
c402277.ssl.cf1.rackcdn.com/publications/1371/files/original/ENGLISH-FULL.
pdf?1599693362>. Acesso em: set. 2020.
ZHANG, T. et al. Probable Pangolin Origin of Sars-CoV-2 associated with the
COVID-19 outbreak. Current Biology, v.30, n.7, p.1346-51, 2020. https://doi.
org/10.1016/j.cub.2020.03.022.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Carlos Alfredo Joly, Helder Lima de Queiroz

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Estudos Avançados não celebra contrato de cessão de direitos autorais com seus colaboradores, razão pela qual não detém os direitos autorais dos artigos publicados. Os interessados em reproduzir artigos publicados na revista devem necessariamente obter o consentimento do autor e atribuir devidamente os créditos ao periódico.