Geology and geochemistry of Serra Preta miocenic volcanism, Pedro Avelino/RN, NE Brazil

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v22-189476

Keywords:

Mafic volcanism, Intraplate, Alkaline, Miocene, Dike system

Abstract

In NE Brazil, small-scale volcanic systems constitute a N-S directed ca. 200 km long tectono-magmatic province, the Macau-Queimadas Alignment, composed of mafic alkaline volcanic rocks. The aim of this research was to characterize the petrogenesis and emplacement mechanism of one of these occurrences in the southern border of the Potiguar Basin through field geology, petrography, and whole-rock geochemistry. In the study area, crop out three volcanic bodies with contrasting geometries. The most expressive one has tectonically controlled magmatic emplacement, generating a system of dykes in the NNW-SSE and NE-SW directions. Petrographically, the set shows shallow volcanic and intrusive features, consisting of olivine basalts and nepheline microgabbros. The textural facies observed indicate final cooling at shallow crustal depths of silica-undersaturated alkaline magma, leading to formation of basanites, melanephelinites, and olivine basalts. Geochemical data show that these rocks are relatively primitive (Mg# = 65–79) with low SiO2 (39–43%) and high MgO (12–19%) and Ni (> 200 ppm). They display enrichment in light rare earth (LaN/YbN ~ 35–17) and incompatible elements, with negative anomalies of Rb, K, and Hf. Mass balance modeling of oxides and simulations with MELTs suggests ~ 64% fractional crystallization and a cumulate composed by olivine, melilite, nepheline, magnetite, apatite, and perovskite. Batch melting modeling for trace element indicate low degrees (< 5%) of  elting of an incompatibleenriched garnet-bearing lherzolite source with minor amounts of amphibole and/or phlogopite. Instabilities of local stress fields during the Miocene reactivated pre-existing structures that favored channeling and flow of mantle-derived magma as well as their emplacement in high-crustal levels or even at the surface.

Downloads

Download data is not yet available.

References

Adam, J., Green, T. (2006). Trace element partitioning between mica-and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contributions to Mineralogy and Petrology, 152, 1-17. https://doi.org/10.1007/s00410-006-0085-4

Aldanmaz, E., Köprübaşı, N., Gürer, Ö. F., Kaymakçı, N., Gourgaud A. (2006). Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: implications for mantle sources and melting processes. Lithos, 86(1-2), 50-76. https://doi.org/10.1016/j.lithos.2005.04.003

Ali, S., Ntaflos, T. (2011). Alkali basalts from Burgenland, Austria: Petrological constraints on the origin of the westernmost magmatism in the Carpathian–Pannonian Region. Lithos, 121(1-4), 176-188. https://doi.org/10.1016/j.lithos.2010.11.001

Almeida, F. F. M., Carneiro, C. D. R., Mizusaki, A. M. P. (1996). Correlação do magmatismo das bacias da margem continental brasileira com o das áreas emersas adjacentes. Revista Brasileira de Geociências, 26(3), 125-138.

Almeida, F. F. M., Hasui, Y., Brito Neves, B. B., Fuck, R. (1981). Brazilian structural provinces: An introduction. Earth Science Reviews, 17(1-2), 1-29. https://doi.org/10.1016/0012-8252(81)90003-9

Angelim, L. A. A., Medeiros, V. C., Nesi, J. R. (2006). Programa Geologia do Brasil – PGB. Projeto Geologia e Recursos Minerais do Estado do Rio Grande do Norte. Mapa Geológico do Estado do Rio Grande do Norte. Escala 1:500.000. Recife: CPRM/FAPERN.

Asimow, P. D., Ghiorso, M. S. (1998). Algorithmic modifications extending MELTS to calculate subsolidus phase relations. American Mineralogist, 83, 1127-1131. https://doi.org/10.2138/am-1998-9-1022

Bertani, R. T., Neto, A. F. A., Matos, R. M. D. (1987). O habitat do petróleo e as perspectivas exploratórias da Bacia Potiguar emersa. Boletim de Geociências da Petrobras, 1, 41-49.

Bezerra, F. H., Castro, D. L., Maia, R. P., Sousa, M. O. L., Lima, E. N. M., Rossetti, D. F., Bertotti, G., Souza, Z. S., Nogueira, F. C. C. (2020). Postrift stress field inversion in the Potiguar Basin, Brazil–Implications for petroleum systems and evolution of the equatorial margin of South America. Marine and Petroleum Geology, 111, 88-104. https://doi.org/10.1016/j.marpetgeo.2019.08.001

Chakhmouradian, A. R., Reguir, E. P., Kamenetsky, V. S., Sharygin, V. V., Golovin, A. V. (2013). Trace-element partitioning in perovskite: implications for the geochemistry of kimberlites and other mantle-derived undersaturated rocks. Chemical Geology, 353, 112-131. https://doi.org/10.1016/j.chemgeo.2013.01.007

Christiansen, E. H. (2020). PetroMode. Brigham Young University. Disponível em: http://hdl.lib.byu.edu/1877/2708.Acesso em: 22 abr. 2022.

Cocherie, A. (1986). Systematic use of trace element distribution patterns in log-log diagrams for plutonic suites. Geochimica et Cosmochimica, 50(11), 2517-2522. https://doi.org/10.1016/0016-7037(86)90034-7

Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104(1-4), 1-37. https://doi.org/10.1016/0009-2541(93)90140-E

Corgne, A., Liebske, C., Wood, B. J., Rubie, D. C., Frost, D. J. (2005). Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochimica et Cosmochimica, 69(2), 485-496. https://doi.org/10.1016/j.gca.2004.06.041

Deer, W. A., Howie, R. A., Zussman, J. (1992). An introduction to the rock-forming minerals. Harlow: Longman House.

DePaolo, D. J. (1981). Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53(2), 189-202. https://doi.org/10.1016/0012-821X(81)90153-9

Di Giuseppe, P., Agostini, S., Lustrino, M., Karaoglu, O., Savascin, M. Y., Manetti, P., Yalcin, E. (2017). Transition from compression to strike-slip tectonics revealed by Miocene–Pleistocene volcanism west of the Karlıova triple junction (East Anatolia). Journal of Petrology, 58(10), 2055-2087. https://doi.org/10.1093/petrology/egx082

Ernst, R. E., Buchan, K. L. (1997). Giant radiating dyke swarms: their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. Geophysical Monograph-American Geophysical Union, 100, 297-334. https://doi.org/10.1029/GM100p0297

Floyd, P. A., Winchester, J. A. (1978). Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chemical Geology, 21(3-4), 291-306. https://doi.org/10.1016/0009-2541(78)90050-5

Fodor, R. V., Mukasa, S. B., Sial, A. N. (1998). Isotopic and trace-element indications of lithospheric and asthenospheric components in Tertiary alkalic basalts, northeastern Brazil. Lithos, 43(4), 197-217. https://doi.org/10.1016/S0024-4937(98)00012-7

Françolin, J. B. L., Szatmari, P. (1987). Mecanismo de rifteamento da porção oriental da margem norte brasileira. Revista Brasileira de Geociências, 17(2), 196-207.

Frey, F. A., Green, D. H., Roy, S. D. (1978). Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology, 19(3), 463-513. https://doi.org/10.1093/petrology/19.3.463

Gao, X., Yu, S., Peng, Y., Lv, P., Wang, M., Liu, Y., Li, S., Jiang, X., Ji, W., Li, C. (2021). Insights into OIB-like magmatism contemporaneous with oceanic subduction: Petrogenetic constraints on the Kendelong metagabbro in the North Qaidam. Lithos, 392-393, 106130. https://doi.org/10.1016/j.lithos.2021.106130

Ghiorso, M. S., Sack, R. O. (1995). Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology, 119, 197-212. https://doi.org/10.1007/BF00307281

Grapes, R. H. (2011). Pyrometamorphism. Berlin: Springer Verlag. https://doi.org/10.1007/978-3-642-15588-8_1

Green, T. H., Blundy, J. D., Adam, J., Yaxley, G. M. (2000). SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1,080–1,200°C. Lithos, 53(3-4), 165-187. https://doi.org/10.1016/S0024-4937(00)00023-2

Guimarães, A. R. (2018). Cenozoic volcanism in Northeast Brazil and its links to the Cameroon Line. Tese (Doutorado). Edinburgh: School of Geosciences, University of Edinburgh. Disponível em: http://hdl.handle.net/1842/35765. Acesso em: 19 abr. 2022.

Guimarães, A. R., Fitton, J. G., Kirstein, L. A., Barfod, D. N. (2020). Contemporaneous intraplate magmatism on conjugate South Atlantic margins: A hotspot conundrum. Earth and Planetary Science Letters, 536, 116147. https://doi.org/10.1016/j.epsl.2020.116147

Guimarães, I. P. (1982). Petrologia e geoquímica da Província Alcalina Terciária de Fortaleza – CE. Dissertação (Mestrado). Recife: Universidade Federal de Pernambuco.

Haller, M. J., Massaferro, G. I., Alric, V. I., Navarrete, C. R., Menegatti, N. (2020). Cenozoic intraplate magmatism of central Patagonia, Argentina. Journal of South American Earth Sciences, 102, 102650. https://doi.org/10.1016/j.jsames.2020.102650

Hauri, E. H., Wagner, T. P., Grove, T. L. (1994). Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology, 117(1-4), 149-166. https://doi.org/10.1016/0009-2541(94)90126-0

Hollanda, M. H. B. M., Archanjo, C. J., Macedo Filho, A. A., Fossen, H., Ernst, R. E., Castro, D. L., Melo, A. C., Oliveira, A. L. (2019). The Mesozoic Equatorial Atlantic Magmatic Province (EQUAMP). In: R. K. Srivastava, R. E. Ernst, P. Peng (Eds.). Dyke swarms of the world: a modern perspective. Singapore: Springer Geology, p. 87-110. https://doi.org/10.1007/978-981-13-1666-1_3

Irvine, T. N. J., Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5), 523-548. https://doi.org/10.1139/e71-055

Klemme, S., O’Neill, H. StC. (2000). The near-solidus transition from garnet lherzolite to spinel lherzolite. Contributions to Mineralogy and Petrology, 138(3), 237-248. https://doi.org/10.1007/s004100050560

Knesel, K. M., Souza, Z. S., Vasconcelos, P. M., Cohen, B. E., Silveira, F. V. (2011). Young volcanism in the Borborema Province, NE Brazil, shows no evidence for a trace of the Fernando de Noronha plume on the continent. Earth and Planetary Science Letters, 302(1-2), 38-50. https://doi.org/10.1016/j.epsl.2010.11.036

LaTourrette, T., Hervig, R. L., Holloway, J. R. (1995). Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth and Planetary Science Letters, 135(1-4), 13-30. https://doi.org/10.1016/0012-821X(95)00146-4

Le Bas, M. J. (1989). Nephelinitic and basanitic rocks. Journal of Petrology, 30(5), 1299-1312. https://doi.org/10.1093/petrology/30.5.1299

Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3), 745-750. https://doi.org/10.1093/petrology/27.3.745

Liu, S., Tommasi, A., Vauchez, A., Mazzucchelli, M. (2019). Crust-mantle coupling during continental convergence and break-up: Constraints from peridotite xenoliths from the Borborema Province, northeast Brazil. Tectonophysics, 766, 249-269. https://doi.org/10.1016/j.tecto.2019.05.017

Matos, R. M. D. (1992). The northeast Brazilian rift system. Tectonics, 11(4), 766-791. https://doi.org/10.1029/91TC03092

Menzies, M., Rogers, N., Tindle, A., Hawkesworth, C. (1987). Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenospherelithosphere interaction. In: M. K. Menzies, C. J. Hawkesworth (Eds.). Mantle Metasomatism. Londres: Academic Press, p. 313-361.

Middlemost, E. A. K. (1975). The basalt clan. Earth-Science Reviews, 11(4), 337-364. https://doi.org/10.1016/0012-8252(75)90039-2

Minissale, S., Zanetti, A., Tedesco, D., Morra, V., Melluso, L. (2019). The petrology and geochemistry of Nyiragongo lavas of 2002, 2016, 1977 and 2017 AD, and the trace element partitioning between melilitite glass and melilite, nepheline, leucite, clinopyroxene, apatite, olivine and Fe-Ti oxides: a unique scenario. Lithos, 332-333, 296-311. https://doi.org/10.1016/j.lithos.2019.02.023

Mitchell, R. H. (1972). Composition of perovskite in kimberlite. American Mineralogist, 57(11-12), 1748-1753.

Morishita, T., Hirano, N., Sumino, H., Sato, H., Shibata, T., Yoshikawa M., Arai, S., Nauchi, R., Tamura, A. (2020). Alkali basalt from the Seifu Seamount in the Sea of Japan: post-spreading magmatism in a back-arc setting. Solid Earth, 11, 23-36. https://doi.org/10.5194/se-2019-116

Ngonge, E. D., Hollanda, M. H. B. M., Pimentel, M. M., Oliveira, D. C. (2016). Petrology of the alkaline rocks of the Macau Volcanic Field, NE Brazil. Lithos, 266-267, 453-470. https://doi.org/10.1016/j.lithos.2016.10.008

Nielsen, R. (2021). Geochemical Earth Reference Model (GERM) partition coefficient (Kd) database. Disponível em: https://earthref.org/KDD/. Acesso em: 14 jun. 2021.

Onuma, N., Ninomiya, S., Nagasawa, H. (1981). Mineral/groundmass partition coefficients for nepheline, melilite, clinopyroxene and perovskite in melilite-nepheline basalt, Nyiragongo, Zaire. Geochemical Journal, 15(4), 221-228. https://doi.org/10.2343/geochemj.15.221

Oyan, V. (2018). Petrogenesis of the Quaternary mafic alkaline volcanism along the African-Anatolian plates boundary in Turunçlu-Delihalil (Osmaniye) region in southern Turkey. Lithos, 314-315, 630-645. https://doi.org/10.1016/j.lithos.2018.06.008

Paiva, H. S. (2004). Caracterização geológica e petrografia de corpos vulcânicos cenozóicos na região de Lajes a Pedro Avelino-RN. Monografia de Graduação. Natal: Departamento de Geologia - UFRN.

Pessoa Neto, O. C., Soares, U. M., Silva, J. G. F., Roesner, E. H., Florencio, C. P., Souza, C. A. V. (2007). Bacia Potiguar. Boletim de Geociências da Petrobras, 15, 357-369.

Princivalle, F., Salviulo, G., Fabro, C., Demarchi, G. (1994). Inter-and intra-crystalline temperature and pressure estimates on pyroxenes from NE Brazil mantle xenoliths. Contributions to Mineralogy and Petrology, 116(1-2), 1-6. https://doi.org/10.1007/BF00310685

Rao, A. B., Sial, A. N. (1972). Observations on alkaline plugs near Fortaleza city, Ceará State, Brazil. 24th International Geological Congress, 14, 56-61. Montréal: Canada. Disponível em: https://www.researchgate.net/publication/230794263_Observations_on_alkaline_plugs_near_Fortaleza_Ceara_state_Brazil. Acesso em: 19 abr. 2022.

Rayleigh, J. W. S. (1896). Theoretical considerations respecting the separation of gases by diffusion and similar processes. Philosophical Magazine, 42(259), 493-498. https://doi.org/10.1080/14786449608620944

Rivalenti, G., Mazzucchelli, M., Girardi, V. A. V., Vannucci, R., Barbieri, M. A., Zanetti, A., Goldstein, S. L. (2000). Composition and processes of the mantle lithosphere in northeastern Brazil and Fernando de Noronha: evidence from mantle xenoliths. Contributions to Mineralogy and Petrology, 138(4), 308-325. https://doi.org/10.1007/s004100050565

Rivalenti, G., Zanetti, A., Girardi, V. A. V., Mazzucchelli, M., Tassinari, C. C. G., Bertotto, G. W. (2007). The effect of the Fernando de Noronha plume on the mantle lithosphere in north-eastern Brazil. Lithos, 94(1-4), 111-131. https://doi.org/10.1016/j.lithos.2006.06.012

Rolff, P. A. M. A. (1947). Notas sobre os basaltos da Borborema. Revista da Escola de Minas, ano XII, p. 5.

Santos, L., Souza, Z. S., Botelho, N. F., Viana, R. R. (2014). Pirometamorfismo ígneo na Bacia Potiguar, Nordeste do Brasil. Geologia USP. Série Científica, 14(2), 121-138. https://doi.org/10.5327/Z1519-874X201400020007

Schwarzer, R. R., Rogers, J. J. W. (1974). A worldwide comparison of alkali olivine basalts and their differentiation trends. Earth and Planetary Science Letters, 23(3), 286-296. https://doi.org/10.1016/0012-821X(74)90117-4

Shaw, D. M. (1970). Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta, 34(2), 237-243. https://doi.org/10.1016/0016-7037(70)90009-8

Sial, A. N. (1976). The post-Paleozoic volcanism of northeast Brazil and its tectonic significance. Anais da Academia Brasileira de Ciências, 48, 299-311.

Sial, A. N. (1977). Petrology and mineral chemistry of peridotite nodules included in Tertiary basaltic rocks of northeast Brazil. Geological Society of America Bulletin, 88(8), 1173-1176. https://doi.org/10.1130/0016-7606(1977)88≤1173:PAMCOP≥2.0.CO;2

Sial, A. N. (1978). Major and trace chemistry of the Tertiary basaltic suite of Rio Grande do Norte and Paraíba, northeast Brazil. Jornal de Mineralogia, 7, 119-128.

Sial, A. N., Long, L. E., Pessoa, D. A. R., Kawashita, K. (1981). Potassium-argon ages and strontium isotope geochemistry of Mesozoic and Tertiary basaltic rocks, northeastern Brazil. Academia Brasileira de Ciências, 53(1), 115-121.

Silveira, F. V. (2006). Magmatismo cenozóico da porção central do Rio Grande do Norte, NE do Brasil. Tese (Doutorado). Natal: Departamento de Geologia - UFRN. Disponível em: https://rigeo.cprm.gov.br/handle/doc/201. Acesso em: 19 abr. 2022.

Smith, P. E., Evensen, N. M., York, D., Szatmari, P., Oliveira, D. C. (2001). Single crystal 40Ar-39Ar dating of pyrite: no fool’s clock. Geology, 29(5), 403-406. https://doi.org/10.1130/0091-7613(2001)029≤0403:SCAADO≥2.0.CO;2

Souza, Z. S., Vasconcelos, P. M., Nascimento, M. A. L., Silveira, F. V., Paiva, H. S., Dias, L. G. S., Thied, D., Carmo, I.O. (2003). 40Ar/39Ar geochronology of Mesozoic and Cenozoic magmatism in NE Brazil. IV South American Symposium on Isotope Geology, 4., 691-694. Salvador.

Souza, Z. S., Wang, C., Jin, Z., Li, J., Yang, J., Botelho, N. F., Viana, R. R., Santos, L., Liu, P., Li, W. (2019). Pyrometamorphic aureoles of Cretaceous sandstones and shales by Cenozoic basic intrusions, NE Brazil: Petrographic, textural, chemical and experimental approaches. Lithos, 326-327, 90-109. https://doi.org/10.1016/j.lithos.2018.11.033

Störmer Jr., J. C., Nicholls, J. (1978). XLFRAC: a program for interactive testing of magmatic differentiation models. Computers and Geosciences, 4(2), 143-159. https://doi.org/10.1016/0098-3004(78)90083-3

Streckeisen, A. (1976). To each plutonic rock its proper name. Earth-science reviews, 12(1), 1-33. https://doi.org/10.1016/0012-8252(76)90052-0

Sun, S. S., McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, 42(1), 313-345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19

Terra, S. A., Souza, Z. S., Botelho, N. F., Viana, R. R., Legrand, J. M., Srivastava, N. K. (2016). Pirometamorfismo em carbonatos cretácicos da Formação Jandaíra, Bacia Potiguar, Nordeste do Brasil. Geologia USP. Série Científica, 16(1), 61-83. https://doi.org/10.11606/issn.2316-9095.v16i1p61-83

Vital, H., Tabosa, W. F., Souza, Z. S., Farias, P. R. C., Lima, Z. M. C., Araújo, P. C., Córdoba, V. C., Sousa, D. C. (2014). Geologia e recursos minerais da Folha Jandaíra SB. 24-XD-III: estado do Rio Grande do Norte. Escala: 1:100.000. Recife: Serviço Geológico do Brasil/CPRM.

Wager, L. R., Deer, W. A. (1939). Geological Investigations in East Greenland, Part III: The Petrology of the Skaergaard Intrusion, Kangerdlugssuaq, East Greenland. Meddelelser om Grønland, 105, 352 p.

Wilson, M. (1989). Igneous petrogenesis: a global tectonic approach. Londres: Unwin Hyman. https://doi.org/10.1007/978-1-4020-6788-4

Winchester, J. A., Floyd, P. A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343. https://doi.org/10.1016/0009-2541(77)90057-2

Yoder, H. S. J., Tilley, C. E. (1962). Origin of basalt magmas: an experimental study of natural and synthetic rock systems. Journal of Petrology, 3(3), 342-532. https://doi.org/10.1093/petrology/3.3.342

Zhao, Y., Zou, H., Li, N., Wei, W., Yuan, C., Fan, Q., Zhang, X. (2020). Petrogenesis of late Cenozoic basalts from Dalinor, Inner Mongolia: Implications for lateral mantle heterogeneity in eastern China. Lithos, 366-367, 105561. https://doi.org/10.1016/j.lithos.2020.105561

Published

2022-07-12

Issue

Section

Articles

How to Cite

Oliveira, J. L. ., Souza, Z. S. de ., & Vilalva, F. C. J. . (2022). Geology and geochemistry of Serra Preta miocenic volcanism, Pedro Avelino/RN, NE Brazil. Geologia USP. Série Científica, 22(2), 59-86. https://doi.org/10.11606/issn.2316-9095.v22-189476