Supercontinent Teory: discussion and constructive criticism

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v22-191048

Keywords:

Fission, Fusion, Nuna, Nena, Gondwana, Pangea

Abstract

The Supercontinent Theory had Alfred Wegener as its prime precursor along the first decades of the XX century. One should emphasize the front of contestations that arose from the geoscientists of that time, most of them engaged with the Geosynclinal Theory. The redivivation (and credit) came only with Harry Hess, in 1962, when he demonstrated that the great obstacles (unknown factors of the continental drift, unlawfully), inhibitors of the theory, were scientifically demonstrable with the research, and concept of mantlic convection, and even more so with the momentum o the emergence of the plate tectonics (and the fight agains sensu lato fixism). Folowing Hess, many other authors brough a series of new important information recorded by different publications such as a series of propositions, addenda, and reviews, specially between 1970 and 2005. Since then, a remarkable phase of contributions, publications, books, and chapters has been installed, all with new scientific data. It should be noted that this branch of geosciences is still in a flow stage. The application of these concepts and knowledge was extended to the Archean (in the most problematic case of all Eratemas), until the end of the Mesoproterozoic (e.g. “Gondwana”, “Rodínia” projects, etc.), deserving of a specific international project. Concomitant with these data, a series of pending issues have arisen for all cases of supercontinents. This paper has catalogued a number os problems to be exposed and their solutions. In conclusion, Pangea, by its general geological, geochronological, and paleomagnetic data is the only one that can be supported as a scientific fact. All other configurations proposed prior to Pangea, although very good hypotheses, are to be...

Downloads

Download data is not yet available.

References

Aspler, L. B., Chiarenzelli, J. P. (1998). The New Archean supercontinents? Evidence from Early Paleoproterozoic. Sedimentary Geology, 120(1-4), 75-104. https://doi.org/10.1016/S0037-0738(98)00028-1

Bleeker, W. (2003). The late Archean Record: a puzzle in ca. 35 pieces. Lithos, 71(2-4), 99-134. https://doi.org/10.1016/J.LITHOS.2003.07.003

Brito Neves, B. B., Fuck, R. A., Campanha, G. A. (2021). Basement inliers of the Brasiliano Structural Provinces. Journal of South American Earth Sciences, 110, 103392. https://doi.org/10.1016/j.jsames.2021.103392

Cawood, P. A., Hawkesworth, C. J., Pisarevsky, S. A., Dhuime, B., Capitanio, F. A., Nebel, O. (2018). Geological archive of the onset of plate tectonics. Philososphical Transactions Royal Society A, 376(2132), 20170405. https://doi.org/10.1098/rsta.2017.0405

Cawood, P. A., Martin, E., Murphy, J. B., Pisarevsky, S. A. (2021). Gondwana’s interlinked perifheral orogens. Earth and Planetary Sciences Letters, 568, 117057. https://doi.org/10.1016/j.epsl.2021.117057

Condie, K. C. (1997). Plate tectonics and crustal evolution. 4. Ed. Oxford: Butterworth/Heinemann, 282 p. https://doi.org/10.1016/B978-0-7506-3386-4.X5000-9

Condie, K. C. (2002). Break up of a Paleoproterozoic supercontinent. Gondwana Research, 5(1), 41-43. https://doi.org/10.1016/S1342-937X(05)70886-8

Condie, K. C. (2011). Earth as an evolving planetary system. Amsterdam: Elsevier, 574 p. https://doi.org/10.1016/C2010-0-65818-4

Dearnly, R. (1966). Orogenic fold belts and the hypothesis od Earth evolution. Physics and Chemistry of the Earth, 7, 1-24. https://doi.org/10.1016/0079-1946(66)90002-4

Der Pluijm, B. V. A., Marshak, S. (2004). Earth Structure. 2. Ed. Londres: Norton & Co., 673 p.

Donovan, S. K. (1987). The fit of the continents in the late Precambrian. Nature, 327, 139-141. https://doi.org/10.1038/327139a0

Du Toit, A. L. (1927). A geological comparison of South America with South Africa. Washington: Carnegie Institution of Washington. Disponível em: https://paleoarchive.com/literature/DuToit1927-GeologicalComparisonSouthAmericaSouthAfrica.pdf. Acesso em: 23 set. 2021.

Du Toit, A. L. (1937). Our wandering continents: an hypothesis of continental drifting. Edinburgh: London, Oliver and Boyd.

Ernst, R. E., Bleeker, W., Söderlund, U., Kerr, A. C. (2013). Large Igneous Provinces and supercontinent: toward completing the plate tectonics revolution. Lithos, 174, 1-14. https://doi.org/10.1016/j.lithos.2013.02.017

Evans, D. A. D., Mitchell, R. N. (2011). Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology, 39(5), 443-446. https://doi.org/10.1130/G31654.1

Evans, D. A. D., Pisarevsky, S. (2008). Plate tectonics on early Earth? Weighing the paleomagnetic evidences. The Geological Society of America, Special Publication, 440, 249-264. https://doi.org/10.1130/2008.2440(12)

Gower, C. F., Ryan, A. B., Rivers, T. (1990). Mid-Proterozoic Laurentia-Baltica: an overview of its geological evolution and a summary of the contributions made by this volume. In: C. F. Gower, T. Rivers, A. B. Ryan (Eds.). Mid Proterozoic Laurentia Baltica. Geological Association of Canada Special Paper, 38, p. 1-20. Disponível em: https://www.researchgate.net/publication/313082013_Mid-Proterozoic_Laurentia-Baltica_An_overview_of_its_geological_evolution_and_a_summary_of_the_contributions_made_by_this_volume. Acesso em: 23 set. 2021.

Hatcher Jr., R. D., Carlson, M. P., McBride, J. H., Catalán. J. R. M. (2007). 4-D framework of the continental crust. Colorado: Boulder. (Geological Society of America Memoir, 200.)

Hess, H. H. (1962). History of ocean basins. In: A. E. J. Engel, H. L. James, B. F. Leonard (Eds.). Petrologic studies: a volume in honor of A. F. Buddnigton. P. 599-620. Disponível em: http://www.mantleplumes.org/WebDocuments/Hess1962.pdf. Acesso em: 23 set. 2021.

Hoffman, P. F. (1988). United Plates of America, the birth of a craton. Annual Reviews of Earth and Planetary Sciences, 16, 543-603. https://doi.org/10.1146/annurev.ea.16.050188.002551

Hoffman, P. F. (1991). Did the breakout of Laurentia turn Gondwana inside out? Sciences, 252(5011), 1409-1412. https://doi.org/10.1126/science.252.5011.1409

Hoffman, P. F. (1992). Rodinia, Gondwanaland, Pangea and Amasia; alaternating inematics scenarios of supercontinental fusion. Eos Transactions American Geophysical Union, 73(14), 282.

Holmes, A. (1928). Theory of continental drift: a symposium on the origin and movement of land masses, both inter-continental and intra-continental, as proposed by Alfred Wegener. Nature, 122, 431-433. https://doi.org/10.1038/122431a0

Kearey, P., Klepeis, A. K., Vine, F. J. (2009). Global tectonics. 3. Ed. Chichester: Wiley-Blackwell, 496 p.

Lahtinen, R., Korja, A., Nironeen, M. (2012). Assembly of the Supercontinent Hudsonia (Columbia) a 1.64-1.79. In: Supercontinent Symposium 2012. Oral presentation.

Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K., Vernikovsky, V. (2008). Assembly, configuration and break up of Rodinia: a synthesis. Precambrian Research, 160(1-2), 179-210. https://doi.org/10.1016/j.precamres.2007.04.021

Light, M. P. R. (1982). Limpopo Mobile belt: a result of continental collision. Tectonics, 1(4), 325-342. https://doi.org/10.1029/TC001i004p00325

Lubnina, N. V., Slabunov, A. (2011). Reconstruction of the Kenorland supercontinent in the Noearchean based on paleomagnetic and geological data. Moscow University Geology Bulletin, 66(4), 242. https://doi.org/10.3103/S0145875211040077

Lubnina, N. V., Slabunov, A. (2017). The Karelian craton in the Structure of the Kenorland supercontinent in the Neoarchean: New Paleomagnetic and Isotope Geochronology Data on Granulites of the Onega Complex. Moscow University Geology Bulletin, 72(6), 377-390. https://doi.org/10.3103/S0145875217060072

McMenamin, M. A. S. (1982). A case for two late Proterozoicearliest Cambrian faunal province loci. Geology, 10(6), 209-292. Disponível em: https://www.researchgate.net/publication/236000351_A_case_for_two_late_Proterozoicearliest_Cambrian_faunal_province_loci. Acesso em: 29 set. 2021.

McMenamin, M. A. S., McMenamin, D. L. S. (1990). The emergence of animals: the Cambrian breakthrough. Nova York: Columbia University Press. https://doi.org/10.7312/mcme93416

Mitchel, R. N., Kilian, T. M., Evans, D. A. (2012). Supercontinent cycles and the calculation of absolute paleolongitude in deep time. Nature, 482, 208-211. https://doi.org/10.1038/nature10800

Moores, E. M. (1991). Southwest US-East Antarctic (SWEAT) connection: a hypothesis. Geology, 19(5), 425-428. https://doi.org/10.1130/0091-7613(1991)019≤0425:SUSEAS≥2.3.CO;2

Moores, E. M., Twiss, R. J. (1995). Tectonics. Nova York: W. H. Freeman and Company, 415 p.

Murphy, J. B., Dostal, J. D. (2011). Secular variation in magmatism and tectonic implication. Lithos, 123(1-4), IX-XII. https://doi.org/10.1016/j.lithos.2011.01.008

Murphy, J. B., Nance, R. D. (2003). Do supercontinent introvert or extrovert?: Sm-Nd isotope evidence. Geology, 31(10), 873-876. https://doi.org/10.1130/G19668.1

Murphy, J. B., Nance, R. D., Cawood, P. A. (2009). Contrasting modes of supercontinent formation and the conundrum of Pangea. Gondwana Research, 15(3-4), 408-420. https://doi.org/10.1016/j.gr.2008.09.005

Pehrsson, S. J., Berman, R. G., Eglington, B., Rainbird, R. (2013). The Neoarchean supercontinent revisited the case of the Rae family of cratons. Precambrian Research, 232, 27-43. https://doi.org/10.1016/j.precamres.2013.02.005

Pesonen, L. J., Elming, S. Å., Mertanen, S., Pisarevskt, S., D’Agrella-Filho, M. S., Meert, J. G., Schmidt, P. W., Abrahamsen, N., Bylund, G. (2003). Paleomagnetic configuration of continents during the Proterozoic. Tectonophysics, 375(1-4), 289-324. https://doi.org/10.1016/S0040-1951(03)00343-3

Piper, J. D. A. (1982). The Precambrian palaemagnetic record: the case of the Proterozoic supercontinent. Earth and Planetary Science Letters, 59(1), 61-89. https://doi.org/10.1016/0012-821X(82)90118-2

Piper, J. D. A. (2010). Protopangea: Paleomagnetic definition of Earth oldest (mid-Archean-Paleoproterozoic) supercontinent. Journal of Geodynamics, 50(3-4), 154-165. https://doi.org/10.1016/j.jog.2010.01.002

Powell, C. McA., Li, Z. X., MacElhinny, M. W., Meert, J. G., Park, J. K. (1993). Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana. Geology, 21(10), 898-892. https://doi.org/10.1130/0091-7613(1993)021≤0889:PCOTOT≥2.3.CO;2

Raumer, J. F., Stampfli, G. M., Bussy, F. (2003). Gondwanaderived microcontinents – the constituents of Variscan and alpine collisional orogens. Tectonophysics, 365(1-4), 7-22. https://doi.org/10.1016/S0040-1951(03)00015-5

Rogers, J. J. W. (1996). A history of continents in the last past three billions or years. The Journal of Geology, 104(1), 91-107. https://doi.org/10.1086/629803

Rogers, J. J. W., Santosh, M. (2004). Continents and supercontinents. Nova York: Oxford University Press, 289 p.

Romano, M., Cifelli, R. L. (2015). 100 Years of continental drift. Science, 350(6263), 915-916. https://doi.org/10.1126/science.aad6230

Sadowski, G. R., Campanha, G. A. C. (2004). Grandes falhas do Brasil continental. In: V. Mantesso-Neto, A. Bartorelli, C. D. R. Carneiro, B. B. Brito Neves (Eds.). Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Marques de Almeida. São Paulo: Beca, p. 407-422.

Schmitt, R. S., Fragoso, R. A., Collins, A. S. (2018). Suturing Gondwana in the Cambrian: the orogenic events of the final amalgamation. In: S. Siegesmund, M. A. S. Basei, P. Oyhantçabal, S. Oriolo (Eds). Geology of Southwest Gondwana: regional geology reviews. Cham: Springer International Publishing, p. 411-232. https://doi.org/10.1007/978-3-319-68920-3_15

Scholl, D. W., Von Huene, R. (2007). Crustal recycling at modern subduction zones applied to the past: issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. In: R. D. Hatcher Jr., M. Carlson, J. H. McBride, J. R. M. Catalán (Eds.). 4-D framework of the continental crust. Boulder, Colorado: The Geological Society Memoir, 200. https://doi.org/10.1130/2007.1200(02)

Stanistreet, I. G. (1993). Ancient and modern examples of tectonic escape basins: the A witwatersrans Basin compared with the Cenozoic Maracaibo basin. Tectonic Controls and Signatures in Sedimentary Successions, 20, 363-376. https://doi.org/10.1002/9781444304053.ch19

Suess, E. (1901). Das Antilitz der Erde. Paris: Colin. Sutton, J. (1963). Long-term cycles in the evolution of the continents. Nature, 198, 731-735. https://doi.org/10.1038/198731b0

Torsvik, T. H., Amudsen, H., Hartz, E. A., Corfu, F., Kuszniire, N., Gaina, C., Doubrovine, P. V., S. B., Aswall, L. D., Jamtveit, B. (2013). A Precambrian microcontinent in the Indian Ocean. Nature Geoscience, 6(3), 223-227. https://doi.org/10.1038/ngeo1736

Umbgrove, J. M. F. (1947). The pulse of the Earth. The Hague, Netherlands: Martinus Nijholf, 380 p. https://doi.org/10.1007/978-94-010-3017-5

Valentine, J. W., Moores, E. M. (1970). Plate tectonics regulation of faunal diversity and sea level. Nature, 228, 657-659. https://doi.org/10.1038/228657a0

Veevers J. J. (1989). Middle/Later Triassic (230 ± 5Ma) singularity in the stratigraphic and magmatic history of the Pangean heat anomaly. Geology, 17(9), 784-787. https://doi.org/10.1130/0091-7613(1989)017<0784:MLTMSI>2.3.CO;2

Veevers, J. J. (1994). Pangea: evolution of a supercontinent and its consequences for Earth’s paleoclimate and sedimentary environments. Special Paper of the Geological Society of America, 288, 13-23. https://doi.org/10.1130/SPE288-p13

Wegener, A. (1912). Die Entstehung der Kontinent. Geologische Rundschau, 3, 276-292. https://doi.org/10.1007/BF02202896

Wegener, A. (1922). Die Entstehung der kontinente und Ozeane. Berlim: Gebrüder Borntraeger.

Williams, H., Hoffman, P. F., Lewry, J. F., Monger, J. W., Rivers, T. (1991). Anatomy of North America: thematic geological portrayals of the continent. Tectonophysics, 187(1-3), 117-134. https://doi.org/10.1016/0040-1951(91)90416-P

Windley, B. F. (1977). The evolving continents. Chichester: John Wiley & Sons, 399 p.

Windley, B. F. (1995). The evolving continents. 3. ed. Chichester: John Wiley & Sons, 526 p.

Worsley, T., Moody, J. B., Nance, R. D. (1985). Proterozoic to recent tectonic tuning of biogeochemical cycles. In: E. T. Sundquist, W. S. Broecker (Eds). The carbon cycle and atmospheric CO2: natural variations Archean to present, 32, p. 561-572. https://doi.org/10.1029/GM032p0561

Worsley, T., Nance, D., Moody, J. B. (1982). Plate tectonic episodicity: a deterministic model for periodic Pangeas. Eos Transactions American Geophysical Union, 65(45), 1104.

Worsley, T., Nance, D., Moody, J. B. (1984). Global tectonics and eustasy for the past 2 billions years. Marine Geology, 58(3-4), 373-400. https://doi.org/10.1016/0025-3227(84)90209-3

Zak, J., Zulauf, G., Röhling, H. G. (eds.). (2013). Crustal evolution and geodynamic process in Central Europe. Proceedings of the Joint Conference of the Czech and German Geological Societies Help in Plzen (Pilsen). Schriftenenrihe der Deutschen für Geowissennschaften, 82, 201 p.

Zhang, S., Zheng-Xiang, L., Evans, D. A. D., Wu, H., Li, H., Dong, J. (2012). Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters, 353-354, 145-155. https://doi.org/10.1016/j.epsl.2012.07.034

Zhao, G., Cawood, P. A., Wilde, S. A., Sun, M. (2002). Review of global 2.1-1.8 Ga collisional orogens and accreted cratons: a pre-Rodinia supercontinent? Earth-Science Reviews, 59(1-4), 125-162. https://doi.org/10.1016/S0012-8252(02)00073-9

Published

2022-07-20

Issue

Section

Articles

How to Cite

Neves, B. B. de B. . (2022). Supercontinent Teory: discussion and constructive criticism. Geologia USP. Série Científica, 22(2), 109-130. https://doi.org/10.11606/issn.2316-9095.v22-191048

Funding data