The São João Marcos Iron Formation: an example of Neoproterozoic Algoma-type iron formation in Rio de Janeiro State, Brazil

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v22-194123

Keywords:

Iron Formation, Algoma, Neoproterozoic, Petrography, Geochemistry

Abstract

The São João Marcos Iron Formation (SJMIF), located near the municipality of Rio Claro in the state of Rio de Janeiro, was here studied regarding its genetic aspects. The methodology involved geological mapping, petrography, and geochemistry. This iron formation has been dated to the Neoproterozoic in previous works and occurs intimately associated to metamafic and metaultramafic rocks. In the mapping area, the host metamafic and metaultramafic rocks occur over an Archean to Paleoproterozoic basement and, over them, sillimanite quartzite and (sillimanite)-garnet-biotite gneiss occur from the base
to the top. Mapping reveals that these lithologies are disposed as an overturned synform. Petrography of the iron formation reveals a modal composition of mainly titanomagnetite and quartz with a few percentages of other minerals (e.g. ferrosilite, muscovite, garnet, zircon, tourmaline, feldspar and amphiboles); the metamafic and metaultramafic rocks are composed basically of plagioclase and hornblende in diverse proportions, and finally, the metaultramafic ones are mainly composed of amphiboles and pyroxenes. Geochemistry of major, trace and rare earth elements points out strong similarities between the SJMIF and classical Neoproterozoic Algoma-type iron formations, besides characteristics of chemical precipitates. For mafic and ultramafic rocks, geochemistry points to a generation in an intracontinental context. These pieces of field, petrography and geochemistry (whole rock and mineral) information suggest an iron formation generated in an extensional environment, possibly accompanying the break-up of the Rodinia supercontinent during the Neoproterozoic. It is the first example of Neoproterozoic Algoma-type iron formation in Rio de Janeiro.

Downloads

Download data is not yet available.

References

André, J. L. F. (2014). Comparação entre o Complexo Juiz de Fora e a unidade granulítica Ponte de Zinco: geocronologia U-Pb em zircão (LA-ICPMS), geoquímica isotópica e composição das fontes geradoras. Tese (Doutorado). Rio de Janeiro: Faculdade de Geologia, Universidade Estadual do Rio de Janeiro.

Basta, F. F., Maurice, A. E., Fontboté, L., Favarger, P. (2011). Petrology and geochemistry of the banded iron formation (BIF) of Wadi Karim and Um Anab, Eastern Desert, Egypt: implications for the origin of neoproterozoic BIF. Precambrian Research, 187(3-4), 277-292. https://doi.org/10.1016/j.precamres.2011.03.011

Bau, M., Dulski, P. (1996). Distribution of yttrium and rareearth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1-2), 37-55. https://doi.org/10.1016/0301-9268(95)00087-9

Biondi, J. C., Lopez, M. (2017). Urucum neoproterozoiccambrian manganese deposits (MS, Brazil): biogenic participation in the ore genesis, geology, geochemistry, and depositional environment. Ore Geology Reviews, 91, 335-386. https://doi.org/10.1016/j.oregeorev.2017.09.018

Biondi, J. C., Polgari, M., Gyollai, I., Fintor, K., Kovacs, I., Fekete, J., Mojzsis, S. J. (2020). Biogenesis of the Neoproterozoic kremydilite manganese ores from Urucum (Brazil) – A new manganese ore type. Precambrean Research, 340, 105624. https://doi.org/10.1016/j.precamres.2020.105624

Braun, J., Pagel, M., Muller, J., Bilong, P., Michard, A., Guillet, B. (1990). Cerium anomalies in lateritic profiles. Geochimica Et Cosmochimica Acta, 54(3), 781-795. https://doi.org/10.1016/0016-7037(90)90373-S

Chaves, M. L. S. (1987). Geologia das mineralizações sulfetadas da região de Lídice – Rio Claro, Rio de Janeiro. Dissertação (Mestrado). Rio de Janeiro: Instituto de Geologia, Universidade Federal do Rio de Janeiro.

Cox, K. G., Mcdonald, R., Hornung, G. (1967). Geochemical and petrographic provinces in the Karoo basalts of Southern Africa. American Mineralogist, 52(9-10), 1451-1474.

Dios, F. R. B. (1995). Geologia, petrologia e metamorfismo dos terrenos de alto grau da porção norte da Folha Mangaratiba, RJ – 1:50.000. Dissertação (Mestrado). Rio de Janeiro: Faculdade de Geologia, Universidade do Estado do Rio de Janeiro.

Dutra, A. C. D. (2013). Metalogenia em terrenos de alto grau: as mineralizações sulfetadas de Rio Claro, RJ. Dissertação (Mestrado). Rio de Janeiro: Faculdade de Geologia, Universidade do Estado do Rio de Janeiro.

Dymek, R. F., Klein, C. (1988). Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 MA Isua supracrustal belt, West Greenland. Precambrian Research, 39(4), 247-302. https://doi.org/10.1016/0301-9268(88)90022-8

Eyles, N., Januszczak, N. (2004). ‘Zipper-rift’: a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth-Science Review, 65(1-2), 1-73. https://doi.org/10.1016/S0012-8252(03)00080-1

Gross, G. A. (1965). Geology of iron deposits in Canada: iron deposits in the appalachian and grenville regions of Canada. Economic Geology Report No. 22. Ottawa: Geological Survey of Canada, Department of Mines and Technical Surveys.

Gross, G. A. (1980). A classification of iron formations based on depositional environments. Canadian Mineralogist, 18(2), 215-222.

Gross, G. A. (1983). Tectonic systems and the deposition of iron-formation. Precambrian Research, 20(2-4), 171-187. https://doi.org/10.1016/0301-9268(83)90072-4

Gross, G. A., McLeod, C. R. (1980). A Preliminary assessment of the chemical composition of iron formations in Canada. The Canadian Mineralogist, 18(2), 223-229.

Heilbron, M., Almeida, J. C., Silva, L. G., Palermo, N., Tupinambá, M., Duarte, B. P., Valladares, C., Ramos, R., Sanson, M., Guedes, E., Gontijo, A., Nogueira, J. R., Valeriano, C., Ribeiro, A., Ragatki, D., Miranda, A., Sanches, L., Melo, C. L., Roig, H., Dios, F. R., Fernandez, G., Neves, A., Guimarães, P., Dourado, F., Lacerda, V. G. (2007). Geologia da folha Volta Redonda SF.23-Z-A-V (1:100.000). Rio de Janeiro/São Paulo: UERJ/CPRM.

Heilbron, M., Pedrosa-Soares, A. C., Campos Neto, M. C., Silva, L. C., Trouw, R., Janasi, V. (2004). Província Mantiqueira. In: B. Mantesso-Neto, C. D. R. Carneiro, B. B. Brito Neves (Eds.). Geologia do continente Sul-Americano: uma evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Beca, p. 203-234.

Hoffmann, T. H. S. (2016). Estudo da Faixa Granulítica entre Rio Claro e Mangaratiba e seu significado no contexto da Zona de Interferência entre as Faixas Brasília e Ribeira. Dissertação (Mestrado). Rio de Janeiro: Faculdade de Geologia, Universidade do Estado do Rio de Janeiro.

Instituto Brasileiro de Geografia e Estatística (IBGE) (1973). Folha Topográfica Mangaratiba (SF-23-Z-A-V-4). IBGE. Disponível em: https://biblioteca.ibge.gov.br/index.php/bibliotecacatalogo?view=detalhes&id=6417. Acesso em: 26 ago. 2022.

Irvine, T. N., Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5), 523-548. https://doi.org/10.1139/e71-055

James, H. L. (1954). Sedimentary facies of iron-formation. Economic Geology, 49(3), 235-293. https://doi.org/10.2113/gsecongeo.49.3.235

Jensen, L. S. (1976). A new cation plot for classifying subalkalic volcanic rocks. Ontário: Division of Mines, Miscellaneous Paper, 22 p.

Klein, C. (2005). Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. American Mineralogist, 90(10), 1473-1499. https://doi.org/10.2138/am.2005.1871

Klein, C., Beukes, N. J. (1989). Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the early Proterozoic Transvaal Supergroup, South Africa. Economic Geology, 84(7), 1733-1774. https://doi.org/10.2113/gsecongeo.84.7.1733

Konhauser, K. O., Planavsky, N. J., Hardisty, D., Robbins, L. J., Warchola, T. J., Haugaard, R., Lalonde, S. V., Partin, C. A., Oonk, P. B. H., Tsikos, H. (2017). Iron formations: a global record of neoarchaean to palaeoproterozoic environmental history. Earth-Science Reviews, 172, 140-177. https://doi.org/10.1016/j.earscirev.2017.06.012

McDonough, W. F., Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120(3-4), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4

Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4), 215-224. https://doi.org/10.1016/0012-8252(94)90029-9

Pearce, J. (1982). Trace Elements Characteristics of lavas from destructive plate boundaries. In: R. S. Thorpe (ed.). Andesites: orogenic andesites and related rocks. Nova York: John Wiley and Sons, p. 525-548.

Pearce, J. A., Cann, J. R. (1973). Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2), 290-300. https://doi.org/10.1016/0012-821X(73)90129-5

Pearce, J. A., Norry, M. J. (1979). Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69, 33-47. https://doi.org/10.1007/bf00375192

Pereira, R. M., Dutra, A. C., Silva, F., Salomão, M., Geraldes, M. (2016). Depositional environments of supracrustal metasedimentary sequence and possible model for zinc mineralization of Rio Claro area, Rio de Janeiro State (Brazil). Journal of Sedimentary Environments, 1(3), 348-359. https://doi.org/10.12957/jse.2016.26016

Planavsky, N., Bekker, A., Rouxel, O. J., Kamber, B., Hofmann, A., Knudsen, A., Lyons, T. W. (2010). Rare Earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: new perspectives on the significance and mechanisms of deposition. Geochimica et Cosmochimica Acta, 74(22), 6387-6405. https://doi.org/10.1016/j.gca.2010.07.021

Riofinex. (1977). Projeto Rio Claro: relatório final. Rio de Janeiro.

Sial, A. N., Campos, M. S., Gaucher, C., Frei, R., Ferreira, V. P., Nascimento, R. C., Pimentel, M. M., Pereira, N. S., Rodler, A. (2015). Algoma-type Neoproterozoic BIFs and related marbles in the Seridó Belt (NE Brazil): REE, C, O, Cr and Sr isotope evidence. Journal of South American Earth Sciences, 61, 33-52. https://doi.org/10.1016/j.jsames.2015.04.001

Stern, R. J., Mukherjee, S. K., Miller, N. R., Ali, K., Johnson, P. R. (2013). ~750 Ma banded iron formation from the Arabian-NubianShieldd: Implications for understanding neoproterozoic tectonics, volcanism, and climate change. Precambrian Research, 239, 79-94. https://doi.org/10.1016/j.precamres.2013.07.015

Taylor, S. R., McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241-265. https://doi.org/10.1029/95RG00262

Tostevin, R., Wood, R. A., Shields, G. A., Poulton, S. W., Guilbaud, R., Bowyer, F., Penny, A. M., He, T., Curtis, A., Hoffmann, K. H., Clarkson, M. O. (2016). Lowoxygen waters limited habitable space for early animals. Nature Comunication, 7, 12818. https://doi.org/10.1038/ncomms12818

Trouw, R. A. J., Heilbron, M., Ribeiro, A., Paciullo, F., Valeriano, C., Almeida, J. C., Tupinambá, M., Andreis, R. (2000). The central segment of the Ribeira Belt. XXXI Congresso de Geologia. Tectonic evolution of South America. Rio de Janeiro: FINEP, p. 287-310.

Valeton, I., Schumann, A., Vinx, R., Wieneke, M. (1997). Supergene alteration since the upper cretaceous on alkaline igneous and metasomatic rocks of the Poços de Caldas ring complex, Minas Gerais, Brazil. Applied Geochemistry, 12(2), 133-154. https://doi.org/10.1016/S0883-2927(96)00060-1

Van Schmus, W. R., Brito Neves, B. B., Williams, I. S., Hackspacher, P. C., Fetter, A. H., Dantas, E. L., Babinski, M. (2003). The Seridó Group of NE Brazil, a late Neoproterozoic pre- to syn-collisional basin in West Gondwana: insights from SHRIMP U-Pb detrital zircon ages and Sm-Nd crustal residence (TDM) ages. Precambrian Research, 127(4), 287-327. https://doi.org/10.1016/S0301-9268(03)00197-9

Viehmann, S., Bau, M., Bühn, B., Dantas, E. L., Andrade, F. R. D., Walde, D. H. G. (2016). Geochemical characterisation of Neoproterozoic marine habitats: evidence from trace elements and Nd isotopes in the Urucum iron and manganese formations, Brazil. Precambrian Research, 282, 74-96. https://doi.org/10.1016/j.precamres.2016.07.006

Wood, D. A. (1980). The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1), 11-30. https://doi.org/10.1016/0012-821X(80)90116-8

Young, G. M. (1976). Iron-formation and glaciogenic rocks of the Rapitan Group, Northwest Territories, Canada. Precambrian Research, 3(2), 137-158. https://doi.org/10.1016/0301-9268(76)90030-9

Published

2023-02-09

Issue

Section

Articles

How to Cite

Azevedo, A. F. C. ., Nunes, R. P. M. ., & Mendes, J. C. . (2023). The São João Marcos Iron Formation: an example of Neoproterozoic Algoma-type iron formation in Rio de Janeiro State, Brazil. Geologia USP. Série Científica, 22(4), 23-43. https://doi.org/10.11606/issn.2316-9095.v22-194123