Stratigraphic correlation between ground penetrating radar and standard penetration test in coastal barrier systems

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v23-198191

Keywords:

Geotechnics, Geological soundings, Sedimentology, Sedimentary compaction

Abstract

Ground-penetrating radar (GPR) or georadar has been successfully used in coastal regions studies to locate and identify sedimentary structures. This technique promotes rapid acquisition development, and in certain coastal environments provides a unique dataset for stratigraphic analysis. In the vast majority of GPR application cases, the depth correlation is performed with a geological survey, marking the reflectors from a stratigraphic analysis. Even so, there is a limitation due to the fact that some sedimentary strata do not present textural changes in their composition; when they do, they are in lower resolution than  the GPR record. Another way of marking the electromagnetic and geological records is based on sedimentary compaction data, through the application of standard penetrating test (SPT) soundings. Thus, three SPT soundings were performed on a 1.5 km acquisition line with GPR. The correlation between these two techniques allowed the marking of stratigraphic horizons that present differences in terms of sedimentary compaction, specifically by the compaction difference at the interface of aeolian and beach sediments.

Downloads

Download data is not yet available.

References

Anthony, D., Moller, I. (2002). The geological architecture and development of the Holmsland Barrier and Ringkobing Fjord area, Danish North Sea Coast. Geografisk Tidskrift, Danish Journal of Geography, 102(1), 27-36. https://doi.org/10.1080/00167223.2002.10649463

Associação Brasileira de Normas Técnicas (ABNT) (2020). NBR 6484 - Sondagem de simples reconhecimento com SPT - Método de ensaio. Brasil: ABNT, 28 p. Disponível em: https://www.abntcatalogo.com.br/pnm.aspx?Q=QUpQNHFZWW1ibXpVV0dLVzRHNnNkYXhTOVUwZnFVckNhaUgxKzZaSm1EQT0=.Acesso em: 9 ago. 2023.

Bridge, J. S., Alexander, J., Collier, R. E. L., Gawthorpe, R. L., Jarvis, J. (1995). Ground-penetrating radar and coring used to study the large-scale structure of point-bar deposits in three dimensions. Sedimentology, 42(6), 839-852. https://doi.org/10.1111/j.1365-3091.1995.tb00413.x

Bristow, C. S., Chroston, P. N., Bailey, I. D. (2000). The structure and development of foredunes on a locally prograding coast: insights from ground-penetrating radar surveys, Norfolk. Sedimentology, 47(5), 923-944. https://doi.org/10.1046/j.1365-3091.2000.00330.x

DHN – Diretoria de Hidrografia Nacional (2011). Tábuas de maré. Disponível em: http://www.mar.mil.br/dhn/chm/tabuas. Acesso em: 11 nov. 2011.

Dillenburg, S. R., Barboza, E. G., Hesp, P. A, Rosa, M. L. C. C. (2011). Ground Penetrating Radar (GPR) and Standard Penetration Test (SPT) records of a regressive barrier in southern Brazil. Journal of Coastal Research, 64, 651-655. Disponível em: https://www.researchgate.net/publication/257525096_Ground_Penetrating_Radar_GPR_and_Standard_Penetration_Test_SPT_records_of_a_regressive_barrier_in_southern_Brazil. Acesso em: 13 mar. 2023.

Dillenburg, S. R., Roy, P. S., Cowell, P. J., Tomazelli, L. J. (2000). Influence of antecedent topography on coastal evolution as tested by the shoreface translation-barrier model (STM). Journal Coastal Research, 16, 71-81. Disponível em: https://www.jstor.org/stable/4300012. Acesso em: 9 ago. 2023.

Folk, R. L., Ward, W. C. (1957). Brazos River Bar: Study and significance of grain size parameters. Journal Sedimentary Petrology, 27(1), 3-26. https:/ /doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

Gressly, A. (1837). Observations géologiques sur les terrains des chaines jurassiques du Canton de Soleure, et des contrées limitrophes: Verhandlungen der allgemeinen Schweizerischen Gesellschaft für die Gesammten Naturwissenschaften, in ihrer einundzwanzigsten Jahresversammlung zu Solothurn, den 25, 26, 27 Juli 1836, Gedruckt bei Joseph Tschan, Solothurn. p. 126-132.

Jol, H. M., Smith, D. G. (1991). Ground penetrating radar of northern lacustrine deltas. Canadian Journal of Earth Sciences, 28(12), 1939-1947. https://doi.org/10.1139/e91-175

Jol, H. M., Smith, D. G., Meyers, R. A. (1996). Digital ground penetrating radar (GPR): An improved and very effective geophysical tool for studying modern coastal barriers (examples for the Atlantic, Gulf and Pacific coasts, U.S.A.). Journal of Coastal Research, 12(4), 960-968. Disponível em: http://www.jstor.org/stable/4298546. Acesso em: 28 jun. 2023.

Leatherman, S. P. (1987). Coastal geomorphic applications of ground penetrating radar. Journal of Coastal Research, 3(3), 397-399. Disponível em: https://www.jstor.org/stable/4297315. Acesso em: 28 jun. 2023.

Lima, L. G., Albuquerque, S. S., Cerveira, G. S., Parise, C. K., Ferreira, M. S., Franco, B. J. (2020). Estratigrafia e Evolução de um Esporão Arenoso em Ambiente Macromaré: Ponta Da Areia - São Luís - Maranhão - Brasil. Revista Geociências, 39(4), 997-1008. https://doi.org/10.5016/geociencias.v39i04.13993

Lima, L. G., Dillenburg, S. R., Medeanic, S., Barboza, E. G., Rosa, M. L. C. C., Tomazelli, L. J., Dehnhardt, B. A., Caron, F. (2013). Sea-level rise and sediment budget controlling the evolution of a transgressive barrier in southern Brazil. Journal of South American Earth Sciences, 42, 27-38. https://doi.org/10.1016/j.jsames.2012.07.002Meyers, R. A., Smith, D. G., Jol, H. M. (1994). Ground penetrating radar investigation of the internal structure of a Pacific coast barrier spit. Abstracts…, 26, 69.

Murakoshi, N., Masuda, F. (1991). A depositional model for a flood tidal delta and washover sands in the late Pleistocene Paleo-Tokio Bay, Japan. In: Reinson, G. E., Zaitlin, B. A., Rahmani, R. A. (Eds.), Clastic Tidal Sedimentology, 16, 219-226.

Neal, A., Richards, J., Pye, K. (2003). Sedimentology of coarse clastic beach ridge deposits, Essex, Southeast England. Sedimentary Geology, 162(3-4), 167-198. https://doi.org/10.1016/S0037-0738(03)00136-2

Neal, A., Roberts, C. L. (2000). Applications of ground-penetrating radar (GPR) to sedimentological, geomorphological and geoarchaeological studies in coastal environments. Geological Society, London, Special Publications, 175(1), 139-171. https://doi.org/10.1144/GSL.SP.2000.175.01.12

Nishi, R., Ohmi, S., Sato, M., Uda, T., Kraus N. C. (1996). Compaction of beaches and dunes. Proceedings of Coastal Engineering, 43, 681-685.

Paz, C., Alcala, F. J., Carvalho, J. M., Ribeiro, L. (2017). Current uses of ground penetrating radar in groundwaterdependent ecosystems research. Science of the Total Environment, 595, 868-885. https://doi.org/10.1016/j.scitotenv.2017.03.210

Porsani, J. L. (1999). Ground Penetrating Radar (GPR): Proposta metodológica de emprego em estudos geológicogeotécnicos nas regiões de Rio Claro e Descalvado - SP. Tese (Doutorado). Rio Claro: Instituto de Geociências e Ciências Exatas, Unesp, 145 p.

Schwartz, R. K. (1975). Nature and genesis of some storm washover deposits. CERC Technical Memorandum 61. U.S. Army Corps of Engineers, 69 p. https://doi.org/10.13140/RG.2.1.2216.9449

Schwartz, R. K. (1982). Bedform and stratification characteristics of some modern small-scale washover sand bodies. Sedimentology, 29(6), 835-849. https://doi.org/10.1111/j.1365-3091.1982.tb00087.x

van Overmeeren, R. A. (1998). Radar facies of unconsolidated sediments in The Netherlands: a radar stratigraphy interpretation method for hydrogeology. Journal of Applied Geophysics, 40(1-3), 1-18. https://doi.org/10.1016/S0926-9851(97)00033-5

Stern, W. (1929). Versuch einer elektrodynamischen Dickenmessung von Gletschereis. Gerlands Beiträge zur Geophysik, 23, 292-333.

Published

2023-09-05

Issue

Section

Articles

How to Cite

Lima, L. G. de . (2023). Stratigraphic correlation between ground penetrating radar and standard penetration test in coastal barrier systems. Geologia USP. Série Científica, 23(3), 47-55. https://doi.org/10.11606/issn.2316-9095.v23-198191