Semiotics of artificial intelligence: a computational analysis of big datasets and automatic image generation
DOI:
https://doi.org/10.11606/issn.1982-8160.v18i3p29-54Keywords:
Artificial intelligence, generative model, enunciative praxis, image generation, MidjourneyAbstract
Artificial intelligence today simulates the complexity of language and human actions in an increasingly satisfactory manner. In this paper I discuss artificial intelligences using semiotic tools, assuming as a theoretical standpoint É. Benveniste’s theory of enunciation in post-Greimasian semiotics, notably Jacques Fontanille’s concept of enunciative praxis, applied to the study of artificial intelligence. This theoretical basis will allow us to address the relation between image databases and algorithms in analyzing large image collections through computer vision, as well as user’s communication modes with the Midjourney generative artificial intelligence model, focusing on machine creativity.
Downloads
References
Beyaert-Geslin, A. (2017). Sémiotique du portrait: De dibutade au selfie. De Boeck Supérieur.
Colas-Blaise, M. (2019). Comment penser la narrativité dans l’image fixe? La “composition cinétique” chez Paul Klee. Pratiques, 181-182. https://doi.org/10.4000/pratiques.6097
D’Armenio, E., Deliège, A., & Dondero, M. G. (2024). Semiotics of Machinic Co-Enunciation About Generative Models (Midjourney and DALL·E), Signata, 15. https://doi.org/10.4000/127x4
D’Armenio, E., Deliège, A., & Dondero, M. G. (no prelo). A semiotic methodology for assessing the compositional effectiveness of generative text-to-image models (Midjourney and DALL·E). In Proceedings of the 1st workshop on critical evaluation of generative models and their impact on society, ECCV 2024. Springer. https://orbi.uliege.be/handle/2268/321378
D’Armenio, E., Dondero, M. G., Deliège, A., & Sarti, A. (no prelo). Criteria for image generation. For a semiotic approach to Midjourney and DALL·E. Semiotic Review.
Deliège, A. (2024). Advances on the F.R.S.-FNRS research project “Towards a Genealogy of Visual Forms”: On character poses in paintings. Centre de Sémiotique et Rhetórique. https://ceserh.hypotheses.org/3929
Deliège, A., & Dondero, M. G. (no prelo). The Semiotic and Computational Analysis of Represented Poses in Painting and Photography. In P. Conte, A.C. Dalmasso, M.G. Dondero & A. Pinotti (Orgs.), Algomedia. The Image at the Time of Artificial Intelligence. Cham; Springer.
Dondero, M. G. (2017a). Barthes entre sémiologie et sémiotique: le cas de la photographie. In J.-P. Bertrand (Org.), Roland Barthes: Continuités (pp. 365-393). Christian Bourgois.
Dondero, M. G. (2017b). The Semiotics of Design in Media Visualization: Mereology and Observation Strategies. Information Design Journal, 23(2), 208-218. https://doi.org/10.1075/idj.23.2.09don
Dondero, M. G. (2019a). Le travail des algorithmes. Quelques réflexions sur l’actantialité et l’énonciation [Apresentação de trabalho]. Conferência da Associação Francesa de Semiótica. https://core.ac.uk/outputs/220155468/
Dondero, M. G. (2019b). Visual semiotics and automatic analysis of images from the Cultural Analytics Lab: how can quantitative and qualitative analysis be combined? Semiotica, 230, 121-142. https://doi.org/10.1515/sem-2018-0104
Dondero, M. G. (2020). The Language of Images. The Forms and the Forces. Springer.
Dondero, M. G. (2022). P.D.R. F.N.R.S. Towards a genealogy of visual forms. Centre de Sémiotique et Rhetórique. https://ceserh.hypotheses.org/p-d-r-towards-a-genealogy-of-visual-forms
Dondero, M. G. (2023). Emerging Faces: The Figure-Ground Relation from Renaissance Painting to Deepfakes. In M. Leone (Org.), The hybrid face: Paradoxes of the visage in the digital era (pp. 74-86). Routledge.
Dondero, M. G. (2024). The Face: Between Background, Enunciative Temporality and Status. Reti, Saperi, Linguaggi: The Italian Journal of Cognitive Sciences. https://www.rivisteweb.it/doi/10.12832/113797
Dondero, M. G. (no prelo). Enunciación temporal en imágenes fijas. Tópicos del seminario.
Dondero, M. G., Rodrigues de Castro, G. H., & Schwartzmann, M. N. (2024). Inteligência artificial e enunciação: Análise de grandes coleções de imagens e geração automática via Midjourney. Todas as Letras, 26(2), 1-24. https://editorarevistas.mackenzie.br/index.php/tl/article/view/17164
Eco, U. (1984). Semiotica e filosofia del linguaggio. Einaudi.
Focillon, H. (1934). Vie de formes. Presses Universitaires de France.
Fontanille, J. (1989). Les espaces subjectifs. Introduction à la sémiotique de l’observateur. Hachette.
Fontanille, J. (1998). Sémiotique et littérature. Essais de méthode. Presses Universitaires de France.
Fontanille, J. (1999). Sémiotique du discours. Presses Universitaires de Limoges.
Fontanille, J., & Zilberberg, C. (1998). Tension et signification. Mardaga.
Geoffre-Rouland, A. (2022, 2 de setembro). Midjourney: une œuvre d’art générée par l’IA remporte un concours et suscite l’indignation. Tom’s Guide. https://www.tomsguide.fr/polemique-une-oeuvre-dart-generee-par-lia-remporte-un-concours-les-artistes-sindignent/
Goodman, N. (1976). Languages of art: An approach to a theory of symbols. Hackett Publishing Company.
Greimas, A. J. (1984). Sémiotique figurative et sémiotique plastique. Actes Sémiotiques Documents, (60). https://www.unilim.fr/actes-semiotiques/3848
Groupe μ. (1998). L’effet de temporalité dans les images fixes. Texte, (21-22), 41-69.
Impett, L. (2020). Analyzing Gesture in Digital Art History. In K. Brown (Org.), Routledge Companion to Digital Humanities and Art History (pp. 386-406). Routledge.
Impett, L., & Moretti, F. (2017). Totentanz. Operationalizing Aby Warburg’s Pathosformeln. Literary Lab Pamphlet, (16). https://litlab.stanford.edu/LiteraryLabPamphlet16.pdf
Lassègue, J. (2017). Turing (G. J. F. Teixeira, Trad.). Estação Liberdade.
Manovich, L. (2011, 4-6 de agosto). Style space: How to compare image sets and follow their evolution. Manovich. https://manovich.net/index.php/projects/style-space
Manovich, L. (2015). Data Science and Digital Art History. International Journal for Digital Art History, 1(1), 3-35.
Manovich, L. (2017). The Science of Culture? Social Computing, Digital Humanities and Cultural Analytics. In M. K. Schäfer, K. Vanes (Orgs.), The Datafied Society. Studying Culture through Data. AUP.
Manovich, L. (2020a, 22 de novembro). Computer Vision, Human Senses, and Language of Art. AI & Society. http://manovich.net/content/04-projects/109-computer-vision-human-senses-and-language-of-art/manovich_computer_vision.pdf
Manovich, L. (2020b). Cultural Analytics. MIT Press.
Manovich, L., & Arielli, M. (2021-2024). Artificial Aesthetics: Generative AI, Art and Visual Media. http://manovich.net/index.php/projects/artificial-aesthetics
Manovich, L., & Douglass, J. (2009). Timeline. 4535 Time Magazine Covers, 1923-2009. Cultural Analytics Lab. http://lab.culturalanalytics.info/2016/04/timeline-4535-time-magazine-covers-1923.html
Manovich, L., Douglass, J., & Zepel, T. (2011). How to Compare One Million Images? In D. Berry (Org.), Understanding Digital Humanities (pp. 249-278). Palgrave Macmillan.
Marin, L. (1993). De la représentation. Seuil.
Meyer, R. (2023). The New Value of the Archive: AI Image Generation and the Visual Economy of ‘Style’. IMAGE. Zeitschrift für interdisziplinäre Bildwissenschaft, 19(1), 100-111. http://dx.doi.org/10.25969/mediarep/22314
Pinotti, A. (2001). Il corpo dello stile: Storia dell’arte come storia dell’estetica a partire da Semper, Riegl, Wölfflin. Mimesis.
Petitot, J. (2004). Morphologie et esthétique. Maisonneuve et Larose.
Santaella, L., & Kaufman, D. (2024). A Inteligência artificial generativa como quarta ferida narcísica do humano. MATRIZes, 18(1), 37-53. https://doi.org/10.11606/issn.1982-8160.v18i1p37-53
Thom, R. (1983). Local et global dans l’œuvre d’art. Le Débat, 2(24), 73-89.
Warburg, A. (2012). L’Atlas Mnémosyne. Éditions Atelier de l’écarquillé.
Wilf, E. Y. From Media Technologies That Reproduce Seconds to Media Technologies That Reproduce Thirds: A Peircean Perspective on Stylistic Fidelity and Style-Reproducing Computerized Algorithms. Signs and Society, 1(2), 185-211. https://doi.org/10.1086/671751
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Creative Commons Attribution License (CC BY-NC-SA 4.0) which allows sharing of the work with acknowledgment of authorship and initial publication in this journal for non-commercial purposes.
- Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publishing in institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.