A memória de trabalho como preditora do desempenho em aritmética de escolares brasileiros

Autores

DOI:

https://doi.org/10.1590/1982-4327e3119

Palavras-chave:

Memória operacional, Matemática, Crianças, Rendimento escolar

Resumo

A memória de trabalho (MT) é um preditor da aprendizagem escolar.  Este estudo teve por objetivo investigar o poder preditivo da memória de trabalho (MT) verbal e não verbal sobre o desempenho da aritmética. Participaram 126 crianças entre 6 e 11 anos. Os instrumentos foram: Teste de Desempenho Escolar, Matrizes Progressivas Colorida de Raven, Cubos de Corsi e Subteste Dígitos. Os resultados demonstraram correlações fortes e positivas do desempenho escolar com inteligência fluida r = 0,64 com MT verbal e com a MT não verbal, ambas com r = 0,51 (p < 0,001). Após regressão linear múltipla, verificou-se que o desempenho na MT visuoespacial foi um forte preditor para a aritmética, efeito não encontrado para a leitura. A regressão demonstrou que a MT explica 38% da variância para a aritmética. Conclui-se que a MT tem uma contribuição expressiva para o desempenho escolar, sendo mais específicas as contribuições do esboço visuoespacial para a aritmética.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Fernanda David Vieira, Universidade Federal da Bahia

    Universidade Federal da Bahia, Vitória da Conquista-BA, Brazil.

  • Denise Oliveira Ribeiro, Universidade Federal de Minas Gerais

    Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil

  • Heitor Blesa Farias, Universidade Federal de Minas Gerais

    Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil

  • Patricia Martins Freitas, Universidade Federal da Bahia

    Universidade Federal da Bahia, Vitória da Conquista-BA, Brazil

Referências

Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20-29. doi:10.1016/j.jecp.2009.11.003

Angelini, A. L., Alves, I. C. B., Custódio, E. M., Duarte, W. F., & Duarte, J. L. M. (1999). Matrizes progressivas coloridas de RAVEN: Escala especial: Manual [Raven’s coloured progressive matrices: Special scale: Handbook]. São Paulo, SP: CETEPP.

Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47-89). New York, NY: Academic Press.

Cragg, L., Richardson, S., Hubber, P. J., Keeble, S., & Gilmore, C. (2017). When is working memory important for arithmetic? The impact of strategy and age. PloS One, 12(12), e0188693. doi:10.1371/journal.pone.0188693

Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1-2), 1-42. doi:10.1016/0010-0277(92)90049-n

Dorneles, B. V. (2019). Mathematical learning and its difficulties in Latin-American countries. In A. Fritz, V. G. Haase, & P. Räsänen (Eds.), International handbook of mathematical learning difficulties: From the laboratory to the classroom (pp. 201-212). Cham, Switzerland: Springer.

Fenesi, B., Sana, F., Kim, J. A., & Shore, D. I. (2015). Reconceptualizing working memory in educational research. Educational Psychology Review, 27(2), 333-351. doi:10.1007/s10648-014-9286-y

Friso-van den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29-44. doi:10.1016/j.edurev.2013.05.003

Fritz, A., Haase, V. G., & Räsänen, P. (2019). International handbook of mathematical learning difficulties: From the laboratory to the classroom. Cham, Switzerland: Springer.

Fürst, A. J., & Hitch, G. J. (2000). Separate roles for executive and phonological components of working memory in mental arithmetic. Memory & Cognition, 28(5), 774-782. doi:10.3758/BF03198412

Gathercole, S. E., & Alloway, T. P. (2004). Working memory and the classroom learning. Dyslexia Review, 15(3), 4-9. Retrieved from https://www.researchgate.net/publication/254392644_Working_memory_and_classroom_learning

Geary, D. C. (2010). Mathematical disabilities: Reflections on cognitive, neuropsychological, and genetic components. Learning and Individual Differences, 20(2), 130-133. doi:10.1016/j.lindif.2009.10.008

Gerardi, K., Goette, L., & Meier, S. (2013). Numerical ability predicts mortgage default. Proceedings of the National Academy of Sciences of the United States of America, 110(28), 11267-11271. doi:10.1073/pnas.1220568110

Gonçalves, H. A., Viapiana, V. F., Sartori, M. S., Giacomoni, C. H., Stein, L. M., & Fonseca, R. P. (2017). Funções executivas predizem o processamento de habilidades básicas de leitura, escrita e matemática? [Executive functions predict the processing of basic reading, writing, and mathematics skills?]. Neuropsicologia Latinoamericana, 9(3), 42-54. Retrieved from https://www.neuropsicolatina.org/index.php/Neuropsicologia_Latinoamericana/article/view/393

Haase, V. G., Júlio-Costa, A., Lopes-Silva, J. B., Starling-Alves, I., Antunes, A. M., Pinheiro-Chagas, P., & Wood, G. (2014). Contributions from specific and general factors to unique deficits: Two cases of mathematics learning difficulties. Frontiers in Psychology, 5, 102. doi:10.3389/fpsyg.2014.00102

Hitch, G. J., Towse, J. N., & Hutton, U. (2011). What limits children’s working memory span? Theoretical accounts and applications for scholastic development. Journal of Experimental Psychology: General, 130(2), 184-198. doi:10.1037//0096-3445.130.2.184

Holmes, J., Adams, J. W., & Hamilton, C. J. (2008). The relationship between visuospatial sketchpad capacity and children’s mathematical skills. European Journal of Cognitive Psychology, 20(2), 272-289. doi:10.1080/09541440701612702

Imbo, I., & LeFevre, J. (2010). The role of phonological and visual working memory in complex arithmetic for Chinese- and Canadian-educated adults. Memory & Cognition, 38(2), 176-185. doi:10.3758/MC.38.2.176

Kellogg, R. T., Turner, C. E., Whiteford, A. P., & Mertens, A. (2016). The role of working memory in planning and generating written sentences. Journal of Writing Research, 7(3), 397-416. doi:10.17239/jowr-2016.07.03.04

Layes, S., Lalonde, R., Bouakkaz, Y., & Rebai, M. (2018). Effectiveness of working memory training among children with dyscalculia: Evidence for transfer effects on mathematical achievement-a pilot study. Cognitive Processing, 19(3), 375-385. doi:10.1007/s10339-017-0853-2

Lopes-Silva, J. B., Moura, R., Júlio-Costa, A., Haase, V. G., & Wood, G. (2014). Phonemic awareness as a pathway to number transcoding. Frontiers in Psychology, 5, 13. doi:10.3389/fpsyg.2014.00013

Lopes Silva, J. B., Moura, R. J., Wood, G., & Haase, V. G. (2015). Processamento fonológico e desempenho em aritmética: Uma revisão da relevância para as dificuldades de aprendizagem [Phonological processing and mathematic performance: A review of the relevance to learning disabilities]. Temas em Psicologia, 23(1), 157-173. Retrieved from http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1413-389X2015000100012&lng=pt&tlng=pt

Mammarella, I. C., Caviola, S., Giofrè, D., & Szűcs, D. (2018). The underlying structure of visuospatial working memory in children with mathematical learning disability. The British Journal of Developmental Psychology, 36(2), 220-235. doi:10.1111/bjdp.12202

Menon, V. (2016). Working memory in children’s math learning and its disruption in dyscalculia. Current Opinion in Behavioral Sciences, 10, 125-132. doi:10.1016/j.cobeha.2016.05.014

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. (2019). Relatório Brasil no PISA 2018: Versão preliminar [Brazil Report at PISA 2018: Preliminary version]. Brasília, DF: INEP/MEC. Retrieved from https://download.inep.gov.br/acoes_internacionais/pisa/documentos/2019/relatorio_PISA_2018_preliminar.pdf

Merkley, R., & Ansari, D. (2016). Why numerical symbols count in the development of mathematical skills: Evidence from brain and behavior. Current Opinion in Behavioral Sciences, 10, 14-20. doi:10.1016/j.cobeha.2016.04.006

Morosanova, V. I., Fomina, T. G., Kovas, Y., & Bogdanova, O. Y. (2016). Cognitive and regulatory characteristics and mathematical performance in high school students. Personality and Individual Differences, 90, 177-186. doi:10.1016/j.paid.2015.10.034

Moura, R., Wood, G., Pinheiro-Chagas, P., Lonnemann, J., Krinzinger, H., Willmes, K., & Haase, V. G. (2013). Transcoding abilities in typical and atypical mathematics achievers: The role of working memory and procedural and lexical competencies. Journal of Experimental Child Psychology, 116(3), 707-727. doi:10.1016/j.jecp.2013.07.008

Ofen, N., Yu, Q., & Chen, Z. (2016). Memory and the developing brain: Are insights from cognitive neuroscience applicable to education? Current Opinion in Behavioral Sciences, 10, 81-88. doi:10.1016/j.cobeha.2016.05.010

Orsini, A., Simonetta, S., & Marmorato, M. S. (2004). Corsi’s block-tapping test: Some characteristics of the spatial path which influence memory. Perceptual and Motor Skills, 98(2), 382-388. doi:10.2466/pms.98.2.382-388

Peijnenborgh, J. C., Hurks, P. M., Aldenkamp, A. P., Vles, J. S., & Hendriksen, J. G. (2016). Efficacy of working memory training in children and adolescents with learning disabilities: A review study and meta-analysis. Neuropsychological Rehabilitation, 26(5-6), 645-672. doi:10.1080/09602011.2015.1026356

Peng, P., Barnes, M., Wang, C., Wang, W., Li, S., Swanson, H. L., …Tao, S. (2018). A meta-analysis on the relation between reading and working memory. Psychological Bulletin, 144(1), 48-76. doi:10.1037/bul0000124

Rittle-Johnson, B., Zippert, E. L., & Boice, K. L. (2018). The roles of patterning and spatial skills in early mathematics development. Early Childhood Research Quarterly, 46, 166-178. doi:10.1016/j.ecresq.2018.03.006

Sala, G., & Gobet, F. (2017). Working memory training in typically developing children: A meta-analysis of the available evidence. Developmental Psychology, 53(4), 671-685. doi:10.1037/dev0000265

Sánchez-Pérez, N., Castillo, A., López-López, J. A., Pina, V., Puga, J. L., Campoy, G., ... Fuentes, L. J. (2018). Computer-based training in math and working memory improves cognitive skills and academic achievement in primary school children: Behavioral results. Frontiers in Psychology, 8, 2327. doi:10.3389/fpsyg.2017.02327

Schwaighofer, M., Fischer, F., & Bühner, M. (2015). Does working memory training transfer? A meta-analysis including training conditions as moderators. Educational Psychologist, 50(2), 138-166. doi:10.1080/00461520.2015.1036274

Singh, K. A., Gignac, G. E., Brydges, C. R., & Ecker, U. K. H. (2018). Working memory capacity mediates the relationship between removal and fluid intelligence. Journal of Memory and Language, 101, 18-36. doi:10.1016/j.jml.2018.03.002

Stein, L. M. (1994). TDE: Teste de Desempenho Escolar: Manual para aplicação e interpretação [TDE: School Performance Test: Manual for application and interpretation]. São Paulo, SP: Casa do Psicólogo.

Swanson, H. L. (2016). Word problem solving, working memory and serious math difficulties: Do cognitive strategies really make a difference? Journal of Applied Research in Memory and Cognition, 5(4), 368-383. doi:10.1016/j.jarmac.2016.04.012

Van de Weijer-Bergsma, E., Kroesbergen, E. H., & van Luit, J. E. H. (2015). Verbal and visual-spatial working memory and mathematical ability in different domains throughout primary school. Memory & Cognition, 43(3), 367-378. doi:10.3758/s13421-014-0480-4

Wechsler, D. (2002). WISC-III: Escala de Inteligência Wechsler para crianças: Manual [WISC- III: Wechsler Intelligence Scale for Children: Handbook] (V. L. M. Figueiredo, Trans., 3rd ed.). São Paulo, SP: Casa do Psicólogo.

Publicado

2021-12-31

Edição

Seção

Psicologia Escolar e Educacional

Como Citar

Vieira, F. D., Ribeiro, D. O., Farias, H. B., & Freitas, P. M. (2021). A memória de trabalho como preditora do desempenho em aritmética de escolares brasileiros. Paidéia (Ribeirão Preto), 31, e3119. https://doi.org/10.1590/1982-4327e3119