Desempenho de jovens nadadoras em provas de curta, média e longa distância
DOI:
https://doi.org/10.11606/issn.1981-4690.2023e37196894Keywords:
Jovens, Fisiologia, Parâmetros técnicos, Natação, TreinamentoAbstract
O objetivo deste estudo foi explicar o papel dos parâmetros antropométricos, fisiológicos e técnicos controlados pela idade cronológica e pelo estado maturacional no desempenho de jovens nadadoras (n=42; 13.3±0.57 anos) em provas de curta (100 metros), média (200 metros) e longa distância (800 metros). Uma análise de regressão múltipla hierárquica (método stepwise) foi utilizada para examinar a variância de todas as provas. A potência anaeróbica e a velocidade crítica explicaram respectivamente, 92% (p<0.05), 84% (p<0.05) e 99 % (p<0.05) da variância na velocidade média dos 100 metros, 200 metros e 800 metros nado crawl. Apesar dos parâmetros técnicos de nado não serem incluídos nos modelos explanatórios, o índice de eficiência de nado mostrou altas correlações com 100 metros (r=0.85, p<0.01), 200 metros (r=0.69, p<0.01) e 800 metros (r=0.72, p<0.01). O desempenho de jovens nadadoras em provas de curta, média e longa distância é explicado predominantemente por componentes fisiológicos e em menor grau pela eficiência técnica.
Downloads
References
Pelayo P, Wille F, Sidney M, Berthoin S, Lavoie JM. Swimming performances and stroking parameters in non-skilled grammar school pupils: relation with age, gender and some anthropometric characteristics. J Sports Med Phys Fitness. 1997;37(2):187-93.
Wells GD, Schneiderman-Walker J, Plyley M. Normal physiological characteristics of elite swimmers. Pediatr Exerc Sci. 2006;18(1):30-52.
Malina RM, Bouchard C, Bar-Or O. Growth, maturation, and physical activity. Champaign (IL): Human Kinetics; 2004.
Geladas ND, Nassis GP, Pavlicevic S. Somatic and physical traits affecting sprint swimming performance in young swimmers. Int J Sports Med. 2005;26(2):139-44.
Strzała M, Tyka A, Krężałek P. Swimming technique and biometric and functional indices of young swimmers in relation to front crawl swimming velocity. Hum Mov. 2007;8(2):112-9.
Mezzaroba PV, Papoti M, Machado FA. Gender and distance influence performance predictors in young swimmers. Motriz. 2013;19(4):730-6.
Noriega-Sánchez SA, Legaz-Arrese A, Suarez-Arrones L, Santalla A, Floría P, Munguía-Izquierdo D. Forced inspiratory volume in the first second as predictor of front-crawl performance in young sprint swimmers. J Strength Cond Res. 2015;29(1):188-94.
Morais JE, Silva AJ, Marinho DA, Marques MC, Batalha N, Barbosa TM. Modelling the relationship between biomechanics and performance of young sprinting swimmers. Eur J Sport Sci. 2016;16(6):661-8.
Sokołowski K, Strzała M, Stanula A, et al. Biological age in relation to somatic, physiological, and swimming kinematic indices as predictors of 100 m front crawl performance in young female swimmers. Int J Environ Res Public Health. 2021;18(12):6062.
Sammoud S, Nevill AM, Negra Y, Bouguezzi R, Chaabene H, Hachana Y. Allometric associations between body size, shape, and 100-m butterfly speed performance. J Sports Med Phys Fitness. 2018;58(5):630-7.
Sammoud S, Nevill AM, Negra Y, Bouguezzi R, Chaabene H, Hachana Y. 100-m breaststroke swimming performance in youth swimmers: The predictive value of anthropometrics. Pediatr Exerc Sci. 2018;30(3):393-401.
Jürimäe J, Haljaste K, Cicchella A, et al. Analysis of swimming performance from physical, physiological, and biomechanical parameters in young swimmers. Pediatr Exerc Sci. 2007;19(1):70-81.
Lätt E, Jürimäe J, Haljaste K, Cicchella A, Purge P, Jürimäe T. Physical development and swimming performance during biological maturation in young female swimmers. Coll Antropol. 2009;33(1):117-22.
Ferreira S, Carvalho DD, Cardoso R, et al. Young swimmers’ middle-distance performance variation within a training season. Int J Environ Res Public Health. 2021;18(2):1010.
Poujade B, Hautier C, Rouard A. Determinants of the energy cost of front-crawl swimming in children. Eur J Appl Physiol. 2002;87(1):1-6.
Tanner JM. Growth at adolescence. 2. ed. Oxford: Blackwell Science; 1962.
Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. Champaign (IL): Human Kinetics; 1988.
Norton K, Olds T, Olive S, et al. Anthropometry and sports performance. In: Norton K, Olds T, editors. Anthropometrica. Sydney: University of New South Wales Press; 1996. p. 287-364.
Slaughter MH, Lohman TG, Boileau R, et al. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60(5):709-23.
Maglischo EW. Swimming fastest. Champaign (IL): Human Kinetics; 2003.
McArdle WD, Katch FI, Katch VL. Exercise physiology: nutrition, energy, and human performance. Baltimore (MD): Lippincott Williams & Wilkins; 2010.
Fernandes R, Guerra S, Lamares JP, Vilas-Boas JP. Critical velocity in swimming: three different methodologies for its determination. In: 5th Annual Congress of the European College of Sport Science; 2000. p. 220.
Monod H, Scherrer J. The work capacity of a synergic muscular group. Ergonomics. 1965;8(1):329-38.
Di Prampero PE. The concept of critical velocity: a brief analysis. Eur J Appl Physiol Occup Physiol. 1999;80(2):162-4.
Dekerle J, Pelayo P, Sydney M, Marais G. Determination of critical speed in relation to front crawl swimming performances. In: Proceedings of the 4th Annual Congress of the European College of Sport Sciences; 1999. p. 127.
Saavedra JM, Escalante Y, Rodríguez FA. A multivariate analysis of performance in young swimmers. Pediatr Exerc Sci. 2010;22(1):135-51.
Smith DJ, Norris SR, Hogg JM. Performance evaluation of swimmers. Sports Med. 2002;32(8):539-54.
Ferguson CJ. An effect size primer: A guide for clinicians and researchers. Prof Psychol Res Pr. 2009;40(5):532-8.
Hair JF, Anderson RE, Tatham RL, Black WC. Multivariate data analysis. 5. ed. Upper Saddle River (NJ): Prentice Hall; 1998.
Ngo TH, La Puente CA. The steps to follow in a multiple regression analysis. In: SAS Global Forum; 2012. p. 22-25.
Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725-41.
Naughton G, Farpour-Lambert NJ, Carlson J, Bradney M, Van Praagh E. Physiological issues surrounding the performance of adolescent athletes. Sports Med. 2000;30(5):309-25.
Van Praagh E. Development of anaerobic function during childhood and adolescence. Pediatr Exerc Sci. 2000;12(2):150-73.
Bar-Or O. Pediatric sports medicine for the practitioner: From physiologic principles to clinical applications. New York: Springer Science & Business Media; 2012.
Inbar O. Development of anaerobic power and local muscular endurance. In: Bar-Or O, organizer. The child and adolescent athlete. Oxford: Blackwell Science; 1996. p. 42-53.
Armstrong N, Welsman J. Peak oxygen uptake in relation to growth and maturation in 11- to 17-year-old humans. Eur J Appl Physiol. 2001;85(5):546-51.
Baxter-Jones AD, Maffulli N. Endurance in young athletes: it can be trained. Br J Sports Med. 2003;37(2):96-7.
Olbrecht J. The science of winning: planning, periodizing and optimizing swim training. Antwerpen: F&G Partners; 2010.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Brazilian journal of physical education and sport

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Todo o conteúdo da revista, exceto onde está identificado, está licenciado sob uma Licença Creative Commons (CC-BY)