Blood lactate concentrations following maximal incremental test in male runners with different ages

Autores/as

  • Cecília Segabinazi Peserico Universidade Estadual de Maringá
  • Paulo Victor Mezzaroba Universidade Estadual de Maringá
  • Danilo Fernandes da Silva Universidade Estadual de Maringá
  • Ana Claudia Pelissari Kravchychyn Universidade Estadual de Maringá
  • Júlio César Camargo Alves Universidade Estadual de Maringá
  • Fabiana Andrade Machado Universidade Estadual de Maringá

DOI:

https://doi.org/10.11606/1807-5509201800010005

Palabras clave:

Physical endurance, Lactic acid, Exercise test, Running

Resumen

The aim of this study was to investigate the effect of age on peak blood lactate concentration following a maximal incremental treadmill test in male recreational runners. Seventy runners from four age groups, ≤25 years; 26-35 years; 36-45 years; >45 years,  performed an incremental treadmill test starting at 8 km·h-1, and increasing by  1 km·h-1 every three minutes until volitional exhaustion. Blood samples were collected at baseline and at the zero, third, fifth and seventh minutes after test to determine lactate concentrations. Peak lactate concentration (LApeak) was defined for each participant as the highest value among the four samples. The lactate concentrations were influenced by the participants’ age (r = -0.47), with LApeak of the younger runners (10.8 ± 2.6 mmol·L) being higher than the values for the older age categories (8.1 ± 3.1, 7.0 ± 1.1 and 6.9 ± 2.8 mmol·L for those 26-35, 36-45 and >45 years, respectively). The LApeak occurred more frequently at the third and fifth minute after the initiation of the test. In conclusion, the lactate concentrations were higher in the younger group (< 25) and reached peak more frequently at the third and fifth minute after the incremental test.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Howley ET, Bassett DR Jr, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27(9):1292-301.

Midgley AW, McNaughton LR, Polman R, Marchant D. Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Med. 2007;37(12):1019-28.

Benelli P, Ditroilo M, Forte R, De Vito G, Stocchi V. Assessment of post-competition peak blood lactate in male and female master swimmers aged 40-79 years and its relationship with swimming performance. Eur J Appl Physiol. 2007;99(6):685-93.

Edvardsen E, Hem E, Anderssen SA. End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: a cross-sectional study. PloS One. 2014;9(1):e85276.

Korhonen MT, Suominen H, Mero A. Age and sex differences in blood lactate response to sprint running in elite master athletes. Can J Appl Physiol. 2005;30(6):647-65.

Marsh GD, Paterson DH, Govindasamy D, Cunningham, DA. Anaerobic power of the arms and legs of young and older men. Exp Physiol. 1999;84(3):589-97.

Hunter GR, Newcomer BR, Weinsier RL, Karapondo, DL, Larson-Meyer, DE, Joanisse, DR, et al. Age is independently related to muscle metabolic capacity in premenopausal women. J Appl Physiol. 2002;93(1):70-6.

Porter, MM, Vandervoort AA, Lexell J. Aging of human muscle: structure, function and adaptability. Scand J Med Sci Sports. 1995;5(3):129-42.

Macaluso A, De Vito G. Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol. 2004;91(4):450-72.

Reaburn P, Dascombe B. Endurance performance in master athletes. Eur Rev Aging Phys Act. 2008;5(1):31-42.

Knechtle B, Rüst CA, Knechtle P, Rosemann T. Does muscle mass affect running times in male long-distance master runners? Asian J Sports Med. 2012;3(4):247-56.

Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40(3):497-504.

Siri WE. Techniques for measuring body composition. Washington DC: National Academy Press; 1961.

Machado FA, Kravchychyn AC, Peserico CS, da Silva DF, Mezzaroba PV. Incremental test design, peak ‘aerobic’ running speed and endurance performance in runners. J Sci Med Sport. 2013;16(6):577-82.

Peserico CS, Zagatto AM, Machado FA. Reliability of peak running speeds obtained from different incremental treadmill protocols. J Sports Sci. 2014;32(10):993-1000.

Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exer. 1982;14(5):377-81.

Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153-6.

Schabort EJ, Hopkins WG, Hawley JA. Reproducibility of self-paced treadmill performance of trained endurance runners. Int J Sports Med. 1998;19(1):48-51.

Currell K, Jeukendrup AE. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008;38(4):297-316.

Kuipers H, Rietjens G, Verstappen F, Schoenmakers H, Hofman G. Effects of stage duration in incremental running tests on physiological variables. Int J Sports Med. 2003;24(7):486-91.

Peserico CS, Zagatto AM, Machado FA. Evaluation of the best-designed graded exercise test to assess peak treadmill speed. Int J Sports Med. 2015;36(9)729-34. Epub 2015 Apr 14. doi: 10.1055/s-0035-1547225

Astrand PO. Experimental studies of physical working capacity in relation to sex and age. Copenhagen: Ejnar Munksgaard; 1952.

Dassonville J, Beillot J, Lessard Y, Jan J, André AM, Le Pourcelet C, et al. Blood lactate concentrations during exercise: effect of sampling site and exercise mode. J Sports Med Phys Fitness. 1998;38:(1)39-46.

Moran P, Prichard JG, Ansley L, Howatson G. The influence of blood lactate sample site on exercise prescription. J Strength Cond Res. 2012;26:563-7.

Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3-13.

Machado FA, Kravchychyn ACP, Peserico CS, da Silva DF, Mezzaroba PV. Effect of stage duration on maximal heart rate and post-exercise blood lactate concentration during incremental treadmill tests. J Sci Med Sport. 2013;16(3):276-80.

Duncan GE, Howley ET, Johnson BN. Applicability of VO2max criteria: discontinuous versus continuous protocols. Med Sci Sports Exerc. 1997;29(2):273-8.

Achten J, Jeukendrup A. Heart rate monitoring: applications and limitations. Sports Med. 2003;33(7):517-38.

Eston R. Use of ratings of perceived exertion in sports. Int J Sports Physiol Perform. 2012;7(2):175-82.

Gass GC, Rogers S, Mitchell R. Blood lactate concentration following maximum exercise in trained subjects. Br J Sports Med. 1981;15(3):172-6.

Baxter-Jones ADG, Eisenmann JC, Sherar LB. Controlling for maturation in pediatric exercise science. Pediatr Exerc Sci. 2005;17(1):18-30.

Armstrong N, McManus AM. Physiology of elite young male athletes. Med Sport Sci. 2011;56:1-22.

Izquierdo M, Hakkinen K, Anton A, et al. Maximal strength and power, endurance performance, and serum hormones in middle-aged and elderly men. Med Sci Sports Exerc. 2001;33(9):1577-87.

Mattern CO, Gutilla MJ, Bright DL, Kirby TE, Hinchcliff KW, Devor ST. Maximal lactate steady state declines during aging process. J Appl Physiol. 2003;95(6):2576-82.

Strupler M, Mueller G, Perret C. Heart rate-based lactate minimum test: a reproducible method. Br J Sports Med. 2009;43(6):432-6.

Chiba T, Ishii H, Takahashi S, Yano T. Relationship between blood lactate and hyperventilation during high-intensity constant-load exercise in heat. Biol Sport. 2011;28(3):159-63.

Descargas

Publicado

2018-12-18

Número

Sección

Artículos

Cómo citar

Peserico, C. S., Mezzaroba, P. V., Silva, D. F. da, Kravchychyn, A. C. P., Alves, J. C. C., & Machado, F. A. (2018). Blood lactate concentrations following maximal incremental test in male runners with different ages. Revista Brasileira De Educação Física E Esporte, 32(1), 5-16. https://doi.org/10.11606/1807-5509201800010005