Landscapes and pedogenetic processes in different Antarctic terrestrial ecosystems
DOI:
https://doi.org/10.11606/eISSN.2236-2878.rdg.2024.210645Keywords:
Permafrost, Climate changes, Organic carbon, CryosphereAbstract
Antarctica has a variety of climates that reflect the vast expanse and unique location of its territory. Despite recent advances, there are still many scientific gaps in our knowledge of Antarctic soils. The objective of this work is to present and discuss the main pedogenetic processes in the different terrestrial ecosystems of Antarctica, defined from an austral latitudinal gradient. The work was developed based on the literature and research experience in Antarctica, where since 2002, the Terrantar Group (INCT Criosfera) has been working incessantly, analyzing, and monitoring the different terrestrial ecosystems. Soils were classified according to the U.S. Soil Taxonomy and IUSS Working Group WRB. The diversity of pedogenetic processes in Antarctica implies a series of chemical, physical and biological changes, at different scales in the terrestrial ecosystem. Eleven pedogenetic processes have been identified along a southern latitudinal gradient: phosphatization, sulfurization, podzolization, rubification, melanization, paludization, gleization, cryoturbation, salinization, deflation and cryoclastic. Areas with sulfurization and phosphatization present greater chemical weathering and greater soil development, forming unique landscapes in midst of the dominance of physical weathering processes (cryoclastic, deflation, cryoturbation). Melanization is disadvantaged by limited vegetation and relatively little accumulation of organic matter in the Antarctic soils.
Downloads
References
BEYER, L.; PINGPANK, K.; WRIEDT, G.; BÖLTER, M. Soil formation in coastal continental Antarctica (Wilkes Land). Geoderma 95: 283-304, 2000.
BIGHAM, J. M.; NORDSTROM, D. K. Iron and aluminum hydroxysulfates from acid sulfate waters. In: ALPERS, C. N.; JAMBOR, J. L.; NORDSTROM, D. K. (Org.). Sulfate Minerals – Crystallography, Geochemistry, and Environmental Significance. Washington, DC: Mineral. Soc. Amer. 40, p. 351–403, 2000.
BLUME, H.-P.; BÖLTER, M. Soils of Wilkes Land (The Windmill Islands). In: BOCKHEIM, J.G. (Org.). The soils of Antarctica. 1. ed. Switzerland: Springer International Publishing, p. 87–105, 2015.
BLUME, H.; SCHNEIDER, D.; BOLTER, M. Organic Matter Accumulation in and Podzolization of Antarctic Soils. Zeitschrift fuer Pflanzenernaehrung und Bodenkunde (Germany), 159. p. 411-412, 1996.
BOCKHEIM, J.G. Soil-Forming Factors in Antarctica. In: BOCKHEIM, J.G. (Org.). The soils of Antarctica. 1. ed. Switzerland: Springer International Publishing, p. 5–20, 2015.
BOCKHEIM, J. G.; UGOLINI, F. C. A review of pedogenic zonation in well-drained soils of the Southern Circumpolar Region. Quaternary Research, v. 34, n. 1, p. 47–66, 1990.
BOCKHEIM, J.; LUPACHEV, A.; BLUME, H.-P.; BÖLTER, M.; SIMAS, F.; MCLEOD, M. Distribution of soil taxa in Antarctica: a preliminary analysis. Geoderma, 245–246, p. 104–111, 2015. doi: 10.1016/j.geoderma.2015.01.017
CAMPBELL, I. B.; CLARIDGE, G. G. C. Antarctica: soils, weathering processes and environment. Amsterdam: Elsevier, 1987. 407p.
CASTRO, M. F.; MEIER, M.; NEVES, J. C. L.; FRANCELINO, M. R.; SCHAEFER, C. E. G. R.; OLIVEIRA, T. S. Influence of different seabird species on trace metals content in Antarctic soils. Anais da Academia Brasileira de Ciencias, v. 94, p. e20210623, 2022.
DAHER, M.; SCHAEFER, C.E.G.R.; THOMAZINI, A.; NETO, E.L.; SOUZA, C.D.; LOPES, D.V., Ornithogenic soils on basalts from maritime Antarctica. Catena, v. 173, n. March 2018, p. 367–374, 2019. https://doi.org/10.1016/j.catena.2018.10.028.
DENT, D. Acid sulphate soils: a baseline for research and development. ILRI Publications, 1986. 204p.
DOLD, B.; AGUILERA, A.; CISTERNAS, M.E.; BUCCHI, F.; AMILS, R. Sources for Iron Cycling in the Southern Ocean. Environmental science & technology, v. 47, p. 6129–6136, 2013.
FRANCELINO, M.R.; SCHAEFER, C.E.G.R.; SIMAS, F.N.B.; FILHO, E.I.F.; SOUZA, J.J.L.L.; COSTA, L.M., Geomorphology and soils distribution under paraglacial conditions in an ice-free area of Admiralty Bay, King George Island, Antarctica. Catena, v. 85, n. 3, p. 194–204, 2011. http://dx.doi.org/10.1016/j.catena.2010.12.007
FRENCH, H. M. The Periglacial Enviroment. 3. ed. Chichester: John Wiley & Sons Ltd, 2007. 479p.
HAUS, N.W.; WILHELM, K.R.; BOCKHEIM, J.G.; FOURNELLE, J.; MILLER, M. Soils of Graham and Palmer Lands, Antarctic Peninsula. In: BOCKHEIM, J.G. (Org.). The soils of Antarctica. Switzerland: Springer International Publishing, p. 205–225, 2015.
IUSS Working Group WRB. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria, 2022. 234p.
KRAUSKOPF, K. B. Introduction to geochemistry, 2nd edn., McGrawHill, New York, 1979. 617p.
LOPES, D.V, SOUZA, J.J.L.L.; OLIVEIRA, F.S.; SCHAEFER, C.E.G.R. Solos e Evolução da Paisagem em Ambiente Periglacial na Península Barton, Antártica Marítima. Revista do Departamento de Geografia USP, v. 0, n. spe, p. 259-267, 2017. http://www.revistas.usp.br/rdg/article/view/132721
LOPES, D.V.; SIQUEIRA, R.G.; OLIVEIRA, F.S.; FERNANDES FILHO, E.I.; SCHAFER, C.E.G.R.; CORRÊA, G.R.,. Solos de basalto da Antártica: implicações paleoclimáticas ao longo de uma sequência climática. REDE – Revista Eletrônica do PRODEMA, v. 13, n. 1, p. 7–18, 2019a.
LOPES, D.V; SCHAEFER, C.E.G.R.; SOUZA, J.J.L.L.; OLIVEIRA, F.S.; SIMAS, F.N.B.; DAHER, M.; GJORUP, D.F. Concretionary horizons, unusual pedogenetic processes and features of sulfate affected soils from Antarctica. Geoderma 347, 13–24, 2019b. https://doi.org/10.1016/j.geoderma.2019.03.024
LOPES, D. V.; OLIVEIRA, F. S.; SOUZA, J.J.L.L.; MACHADO, M.R.; SCHAEFER, C. E. G. R., Soil pockets phosphatization and chemical weathering of sites affected by flying birds of Maritime Antarctica. An Acad Bras Cienc 94: e20210595, 2022a. https://doi.org/10.1590/0001-3765202220210595
LOPES, D. V.; OLIVEIRA, F. S.; PEREIRA, T.T.C.; SCHAEFER, C. E. G. R., Pedogeomorphology and weathering at Snow Island, Maritime Antarctica. Catena 217 (2022) 106515, 2022b.
https://doi.org/10.1016/j.catena.2022.106515
LOPEZ-MARTINEZ, J.; SERRANO, E.; SCHMID, T.; MINK, S.; LINÉS, C. Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology, v. 155–156, p. 62–79, 2012. http://dx.doi.org/10.1016/j.geomorph.2011.12.018
MARKEWICH, H.W.; PAVICH, M.J.; MAUSBACH, M.J.; JOHNSON, R.G.; GONZALEZ, V.M. A Guide for Using Soil and Weathering Profile Data in Chronosequence Studies of the Coastal Plain of the Eastern United States. U.S. Geol. Surv. Bull. 1589-D. U.S. Government Printing Office: Washington, DC, USA, p.31-39, 1989.
MICHEL, R.F.M.; SCHAEFER, C.E.G.R.; DIAS, L.E.; SIMAS, F.N.B.; BENITES, V.M.; MENDONCA, E.S. Ornithogenic Gelisols (Cryosols) from maritime Antarctica; pedogenesis, vegetation, and carbon studies. Soil Science Society of America Journal, v. 70(4), n. October, p. 1370–1376, 2006.
NAVARRO, F.J.G.; ORTIZ-VILLAJOS, J.A.A.; JIMENEZ, C.J.S.; BALLESTA, R.J. Red soil geochemistry in a semiarid Mediterranean environment and its suitability for vineyards. Environ Geochem Health (2011) 33:279–289, 2011. DOI 10.1007/s10653-010-9340-8
OTERO, X. L.; DE LA PEÑA-LASTRA, S.; PÉREZ-ALBERTI, A.; FERREIRA, T.O.; HUERTA-DIAZ, M.A. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nature Communications, v. 9, n. 1, p. 1-8, 2018. http://dx.doi.org/10.1038/s41467-017-02446-8
PEREIRA, T.T.C.; SCHAEFER, C.E.G.R.; KER, J.C;ALMEIDA, C.C.; ALMEIDA, I.C.C.; PEREIRA, A.B. Genesis, mineralogy and ecological significance of ornithogenic soils from a semidesert polar landscape at Hope Bay, Antarctic Peninsula. Geoderma, 209–210, p. 98–109, 2013.
QIN, X.; SUN, L; BLAIS, J.M.; WANG, Y.; HUANG, T.; HUANG, W.; XIE, Z. From sea to land : assessment of the bio-transport of phosphorus by penguins in Antarctica. Chinese Journal of Oceanology and Limnology, v. 32, n. 1, p. 148–154, 2014.
RODRIGUES, W.F.; OLIVEIRA, F.S.; SCHAEFER, C.E.G.R.; LEITE, M.G.P.; GAUZZI, T.; BOCKHEIM, J.G.; PUTZKE, J. Soil-landscape interplays at Harmony Point, Nelson Island, Maritime Antarctica: Chemistry, mineralogy and classification. Geomorphology 336, p. 77–94, 2019. https://doi.org/10.1016/j.geomorph.2019.03.030
SCHAEFER, C.E.G.R.; PEREIRA, T.T.C.; ALMEIDA, I.C.C.; MICHEL, R.F.M.; CORRÊA, G.R.; FIGUEIREDO, L.P.S.; KER, J.C. Penguin activity modify the thermal regime of active layer in Antarctica : A case study from Hope Bay. Catena, v. 149, p. 582–591, 2017. http://dx.doi.org/10.1016/j.catena.2016.07.021
SCHAEFER, C.E.G.R.; PEREIRA, T.T.C.; KER, J.C.; ALMEIDA, I.C.C;SIMAS, F.N.B.; OLIVEIRA, F.S.; CORREA, G.R.; VIEIRA, G. Soils and Landforms at Hope Bay, Antarctic Peninsula: Formation, Classification, Distribution, and Relationships. Soil Science Society of America Journal, v. 79, n. 1, p. 175–184, 2015.
SIMAS, F.N.B.; SCHAEFER, C.E.G.R.,; MELO, V.F.; GUERRA, M.B.B.; SAUNDERS, M.; GILKES, R.J. Clay-sized minerals in permafrost-affected soils (Cryosols) from King George Island, Antarctica. Clays and Clay Minerals, v. 54, n. 6, p. 721–736, 2006.
SIMAS, F.N.B; SCHAEFER, C.E.G.R.; MELO, V.F.; ALBUQUERQUE-FILHO, M.R.; MICHEL, R.F.M.; PEREIRA, V.V.; GOMES, M.R.M.; COSTA, L.M. Ornithogenic cryosols from Maritime Antarctica: Phosphatization as a soil forming process. Geoderma, v. 138, n. 3–4, p. 191–203, 2007.
SIMAS, F.N.B.; SCHAEFER, C.E.G.; FILHO, M.R.A.; FRANCELINO, M.R.; FILHO, E.I.F.; COSTA, L.M. Genesis, properties and classification of Cryosols from Admiralty Bay, maritime Antarctica. Geoderma, v. 144, n. 1–2, p. 116–122, 2008.
SIMAS, F.N.B.; SCHAEFER, C.E.G.; MICHEL, R.F.M.; FRANCELINO, M.R.; BOCKHEIM, J.G. Soils of the South Orkney and South Shetland Islands, Antarctica. In: BOCKHEIM, J.G. (Org.). . The soils of Antarctica. 1. ed. Switzerland: Springer International Publishing, p. 227–273, 2015.
SIQUEIRA R.G.; LOPES D.V.; SOUZA J.J.L.L.; SCHAEFER C.E.G.R.; SOUZA C.D.; OLIVEIRA F.S.D.; FERNANDES FILHO E.I. Acid sulfate soils from Antarctica: genesis and properties along a climatic gradient. An Acad Bras Cienc 94: e20210625, 2021a. DOI 10.1590/0001-3765202120210625.
SIQUEIRA R.G; SCHAEFER C.E.G.R.; FERNANDES-FILHO E.I.; CORRÊA G.R.; FRANCELINO M.R.; SOUZA J.J.L.L.; ROCHA P.A. Weathering and pedogenesis of sediments and basaltic rocks on Vega Island, Antarctic Peninsula. Geoderma 382: 114707, 2021b.
SOIL SURVEY STAFF. Keys to Soil Taxonomy. 13th edition. USDA Natural Resources Conservation Service. 410p, 2022.
SOUZA, J.J.L.L.; SCHAEFER, C.E.G.R.; ABRAHÃO, W.A.P.; DE MELLO, J.W. V.; SIMAS, F.N.B.; DA SILVA, J.; FRANCELINO, M.R. Hydrogeochemistry of sulfate-affected landscapes in Keller Peninsula, Maritime Antarctica. Geomorphology, v. 155–156, p. 55–61, 2012. http://dx.doi.org/10.1016/j.geomorph.2011.12.017
SOUZA, C.D.; SCHAEFER, C.E.G.R.; SIMAS, F.N.B.; SPINOLA, D.N.; DAHER, M. Soil formation in Seymour Island, Weddell Sea, Antarctica. Geomorphology, p. 1–13, 2014. http://dx.doi.org/10.1016/j.geomorph.2014.03.047.
SOUZA, C.D.; SCHAEFER, C.E.G.R.; ROQUE, M.B.; FARIA, A.L.L.; ROSA, K.K.; THOMAZINI, A.; DAHER, M. Soil and landform interplay in the dry valley of Edson Hills, Ellsworth Mountains, continental Antarctica. Geomorphology (Amst). 295, p. 134–146, 2017.
TATUR, A. Ornithogenic soils of the maritime Antarctic The maritime Antarctic forms a climatic zone , which surrounds the. Polish Polar Research, v. 10, n. 4, p. 481–532, 1989.
TATUR, A.; MYRCHA, A. Ornithogenic soils on King George Island, South Shetland Islands (Maritime Antarctic Zone). Polish Polar Research, v. 5, n. 1–2, p. 31–60, 1984.
TATUR, A; MYRCHA, A.; NIEGODZISZ, J. Formation of abandoned penguin rookery ecosystems in the maritime Antarctic. Polar Biology, v. 17, n. 5, p. 405–417, 1997.
ZAZOVSKAYA, E.P.; FEDOROV-DAVYDOV, D.G.; ALEKSEEVA, T.V.; DERGACHEVA, M.I. Soils of Queen Maud Land. In: BOCKHEIM, J.G. (Org.). . The soils of Antarctica. 1. ed. Switzerland: Springer International Publishing, p. 21–44, 2015.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Davi do Vale Lopes, Fábio Soares de Oliveira , Rafael Gomes Siqueira, José João Lelis Leal de Souza, Carlos Ernesto Schaefer, Marcio Rocha Francelino
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution BY-NC-SA que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista. A licença adotada enquadra-se no padrão CC-BY-NC-SA.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).