Soil physical properties and slope stability in Serra do Mar, southeastern Brazil

Autores/as

DOI:

https://doi.org/10.11606/eISSN.2236-2878.rdg.2022.188406

Palabras clave:

Landslide; Residual Soil, Soil Physical Properties, Granite, Weathering

Resumen

Soil physical properties play an important role in landslide rupture mechanisms, since changes in soil texture, structure, and porosity can affect slope permeability. This study characterized a granitic weathering profile and assessed the changes in the properties of the materials related to the main mechanisms that trigger landslides. The study identified three layers with distinctive particularities in macromorphological and micromorphological terms: mature residual soil (well-developed), young residual soil (saprolitic soil), and saprolite. Morphological characterization was carried out in addition to textural analysis, and soil porosity and saturated hydraulic conductivity (Ksat) tests. The weathering profile presented clear differences in morphology, pore size and soil texture, which  could indicate distinct weathering grades. The results suggested that continuous heavy rainfall could contribute to the increase in pore-water pressure between mature residual soil and young residual  soil, favoring the occurrence of slope failure.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

ABNT – Associação Brasileira de Normas Técnicas. 1995. Rochas e Solos – NBR-6502/95. 18p. Rio de Janeiro.

ABNT – Associação Brasileira de Normas Técnicas . 2016. Amostras de Solo – Preparação para ensaios de compactação e caracterização – NBR-6457/16. 8p. Rio de Janeiro.

ABNT – Associação Brasileira de Normas Técnicas . 2016. Solo – Análise granulométrica – NBR-7181/16. 12 p. Rio de Janeiro.

AGÊNCIA NACIONAL DE ÁGUAS - ANA . HidroWeb: sistemas de informações hidrológicas. Available in: <https://www.snirh.gov.br/hidroweb> Acessed jun 2021.

ALMEIDA, F. F. M.; CARNEIRO, C. D. R. Origem e evolução da Serra do Mar. Revista Brasileira de Geociências, v. 28, n. 2, p. 135–150, 1998.

AVELAR, A. S. et al. Mechanisms of the Recent Catastrophic Landslides in the Mountainous Range of Rio de Janeiro, Brazil. Landslide Science and Practice, p. 265–270, 2013. DOI: https://doi.org/10.1007/978-3-642-31337-0_34

BARATA, F. E. Landslides in Tropical Region of Rio de Janeiro. In: 7th International Conference on Soil Mechanics and Foundation Engineering. Proceedings [...] México, Vol. 2, p. 507 – 516, 1969.

BATISTA, J. A. N.; JULIEN, P. Y. Remotely sensed survey of landslide clusters: Case study of Itaoca, Brazil. Journal of South American Earth Sciences, v. 92, n. March 2018, p. 145–150, jun. 2019. DOI: https://doi.org/10.1016/j.jsames.2019.02.021

BIDYASHWARI, H. et al. Physical Properties of Soil and Its Implication to Slope Stability of Nungbi Khunou, NH-150, Manipur. International Journal of Geosciences, v. 08, n. 11, p. 1332–1343, 2017. DOI: https://doi.org/10.4236/ijg.2017.811077

BLIGHT, G. E. Origin and formation of residual soils. In: SIDEBOTTOM, C.; BLIGHT, G. E.; LEONG, E. C. (Org.). Mechanics of Residual Soils. 2. ed. London: Taylor & Francis, 2012. p. 1–40. DOI: https://doi.org/10.1201/b12014

BROLLO, M. J. et al. Itaoca (SP): Histórico de acidentes e desastres relacionados a perigos geológicos.In: 14th Simpósio de Geologia do Sudeste (GEOSUDESTE). Annals [...] São Paulo: Campos do Jordão, 2015.

CAMPANHA, A. G. F.; SADOWSKI, G. R. Tectônica da Faixa Ribeira. 38o Congresso Brasileiro de Geologia, 1994.

CARNEIRO, C.D.R. et al. Mapa Geomorfológico do Estado de São Paulo, ao milionésimo. São Paulo, IPT. Monografias, 5, 1981.

CAROU, Camila Bertaglia. Mineralogia do Granito Itaóca e sua relação com a suscetibilidade a escorregamentos rasos da bacia do Rio Gurutuba. 2019. Dissertação (Mestrado em Geografia Física) - Faculdade de Filosofia, Letras e Ciências Humanas, Universidade de São Paulo, São Paulo, 2019. DOI: https://doi.org/10.11606/D.8.2019.tde-11122019-171423

CERRI, R. I. et al. Landslides Zonation Hazard: Relation between geological structures and landslides occurrence in hilly tropical regions of Brazil. Anais da Academia Brasileira de Ciências, v. 89, n. 4, p. 2609–2623, 2017. DOI: https://doi.org/10.1590/0001-3765201720170224

CERRI, R. I. et al. The assessment of soil chemical, physical, and structural properties as landslide predisposing factors in the Serra do Mar mountain range (Caraguatatuba, Brazil). Bulletin of Engineering Geology and the Environment, v. 79, n. 7, p. 3307–3320, set. 2020. DOI: https://doi.org/10.1007/s10064-020-01791-1

CHE, V. B. et al. Evaluating the degree of weathering in landslide-prone soils in the humid tropics: The case of Limbe, SW Cameroon. Geoderma, v. 170, p. 378–389, 2012. DOI: https://doi.org/10.1016/j.geoderma.2011.10.013

COELHO, R. D. et al. Relationship between soil physical properties and landslides in Serra do Mar mountain range, Brazil. In: 13th International Symposium on Landslides (ISL2020), Proceedings [..] Colômbia: Cartagena, 2021. Available in: https://www.issmge.org/publications/publication/relationship-between-soil-physical-properties-and-landslides-in-serra-do-mar-mountain-range-brazil

COLÂNGELO, A. C. Os parâmetros de resistência ao cisalhamento e a estabilidade das encostas no planalto de Paraibuna e Serra de Caraguatatuba. Revista do Departamento de Geografia, n. 2012, p. 112–129, 2012. DOI: https://doi.org/10.7154/RDG.2012.0112.0007

CRUZ, O. Evolução de vertentes nas escarpas da Serra do Mar em Caraguatatuba-SP. Anais da Academia Brasileira de Ciências, v. 47, 1975.

DE PLOEY, J.; CRUZ, O. Landslides in the Serra do Mar, Brazil. Catena, v. 6, n. 2, p. 111–122, set. 1979. DOI: https://doi.org/10.1016/0341-8162(79)90001-8

DEERE, D. U.; PATTON, F. D. Slope stability in residual soils. In: 4th Pan-American Conference on Soil Mechanics and Foundation Engineering. Proceedings [...] Puerto Rico: San Juan, 1, 87–170, 1971

FALEIROS, F. M.; MORAIS, S. M.; VICENTE, S. C. Geologia e recursos minerais da Folha Apiaí – SG.22-X-BV. São Paulo: [s.n.], 2012. Available in: https://rigeo.cprm.gov.br/xmlui/handle/doc/11366

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS - FAO. Guidelines for soil descriptions. 4th. ed. Rome: Springer International Publishing, 2006. Available in: https://www.ipcinfo.org/fileadmin/user_upload/soils/docs/FAO_guidelines_soil_description__20063.pdf

FURIAN, S. et al. Distribution and dynamics of gibbsite and kaolinite in an oxisol of Serra do Mar, southeastern Brazil. Geoderma, v. 106, n. 1–2, p. 83–100, mar. 2002. DOI: https://doi.org/10.1016/S0016-7061(01)00117-3

FURIAN, S.; BARBIÉRO, L.; BOULET, R. Organisation of the soil mantle in tropical southeastern Brazil (Serra do Mar) in relation to landslides processes. Catena, v. 38, n. 1, p. 65–83, nov. 1999. DOI: https://doi.org/10.1016/S0341-8162(99)00015-6

GOMES, M. C. V.; VIEIRA, B. C. Saturated hydraulic conductivity of soils in a shallow landslide area in the Serra do Mar, São Paulo, Brazil. Zeitschrift für Geomorphologie, v. 60, n. 1, p. 53–65, 2016. DOI: https://doi.org/10.1127/zfg/2016/0229

GRAMANI, M. F.; MARTINS, V. T. S. Debris flows occurrence by intense rains at Itaoca city, São Paulo, Brazil: Field observations. In: Landslides and Engineered Slopes. Experience, Theory and Practice, v. 1, p. 1011–1019, 2016. DOI: https://doi.org/10.1201/9781315375007

INSTITUTO DE PESQUISAS TECNOLÓGICAS DO ESTADO DE SÃO PAULO - IPT. Mapa Geomorfológico do Estado de São Paulo. São Paulo: [s.n.], 1981.

IRFAN, T. Y.; WOODS, N. W. The influence of relict discontinuities on slope stability in saprolitic soils. In: 2nd International Conference on Geomechanics in Tropical Soils, Proceedings, v. 27, n. 1, p. 267--76., 1988. DOI: https://doi.org/10.1016/0148-9062(90)90376-D

KITUTU, M. G. et al. Influence of soil properties on landslide occurrences in Bududa district, Eastern Uganda. African Journal of Agricultural Research, v. 4, n. 7, p. 611–620, 2009. Available in: https://academicjournals.org/journal/AJAR/article-abstract/EEBFB7235056

LACERDA, W. A. Landslide initiation in saprolite and colluvium in southern Brazil: Field and laboratory observations. Geomorphology, v. 87, n. 3, p. 104–119, jun. 2007. DOI: https://doi.org/10.1016/j.geomorph.2006.03.037

MELLO, I. S. C.; BETTENCOURT, J. S. Geologia e gênese das mineralizações associadas ao maciço Itaóca, Vale do Ribeira, SP e PR. Revista Brasileira de Geociências, v. 28, n. 3, p. 269–284, 1998.

MENDES, R. M.; MARINHO, F. A. M.; VALÉRIO FILHO, M. Capacidade de retenção de água em solos da Serra do Mar, SP. Revista do Instituto Geológico, v. 36, n. 1, p. 21–34, 2015. DOI: http://dx.doi.org/10.5935/0100-929X.20150002

NETTO, A. L. C. et al. January 2011: The extreme landslide disaster in Brazil. In: Landslide Science and Practice: Risk Assessment, Management and Mitigation, v. 6, n. October, p. 377–384, 2013. DOI: https://doi.org/10.1007/978-3-642-31319-6_51

ROSS, J. L. S. Ribeira do Iguape Basin Morphogenesis and the Environmental Systems. GEOUSP: Espaço e Tempo (Online), v. 12, n. 12, p. 21, dez. 2002. DOI: https://doi.org/10.11606/issn.2179-0892.geousp.2002.123770

ROSS, J. L. S.; MOROZ, I. C. Mapa Geomorfológico do Estado de São Paulo. Revista do Departamento de Geografia, p. 41–58, 1996. DOI: https://doi.org/10.7154/RDG.1996.0010.0004

ROSSI, M. Mapa pedológico do Estado de São Paulo: revisado e ampliado. Inst. Florest., v. 1, n. 211, p. 118, 2017. Available in: https://www.infraestruturameioambiente.sp.gov.br/institutoflorestal/2017/09/mapa-pedologico-do-estado-de-sao-paulo-revisado-e-ampliado/

SIDLE, R. C.; OCHIAI, H. Landslides: Processes, Prediction, and Land Use. 18. ed. Washington, DC: American Geophysical Union’s (AGU), 2006. v. 13. DOI: https://doi.org/10.1029/WM018

SIDLE, ROY C.; BOGAARD, T. A. Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth-Science Reviews, v. 159, p. 275–291, 2016. DOI: https://doi.org/10.1016/j.earscirev.2016.05.013

VARGAS JR, E. et al. A study of the relationship between the stability of slopes in residual soils and rain intensity. In: International Symposium on Environmental Geotechnology. Proceedings [...] Envo Publishing, Leigh, USA. 1986. p. 491-500.

VARGAS, M. The concept of tropical soils. In: International Conference Geomechanics Tropical Lateritic And Saprolitic Soils. Proceedings [...] 1985. p. 101-134.

VIEIRA, B. C.; FERNANDES, N. F. Landslides in Rio de Janeiro: The role played by variations in soil hydraulic conductivity. Hydrological Processes., v. 18, n. 4, p. 791–805, mar. 2004. DOI: https://doi.org/10.1002/hyp.1363

VIEIRA, B. C.; FERREIRA, F. S.; GOMES, M. C. V. Propriedades Físicas e Hidrológicas dos Solos e os Escorregamentos Rasos na Serra do Mar Paulista. Raega - O Espaço Geográfico em Análise, v. 34, p. 269–287, set. 2015. DOI: http://doi.org/10.5380/raega.v34i0.40739

VIEIRA, B. C.; GRAMANI, M. F. Serra do Mar: The Most “Tormented” Relief in Brazil. In: VIEIRA, B. C.; SALGADO, A. A. R.; SANTOS, L. J. C. (Org.). Landscapes and Landforms of Brazil. 1. ed. São Paulo: Elsevier, 2015. p. 268. DOI: https://doi.org/10.1007/978-94-017-8023-0_26

WATAKABE, T.; MATSUSHI, Y. Lithological controls on hydrological processes that trigger shallow landslides: Observations from granite and hornfels hillslopes in Hiroshima, Japan. Catena, v. 180, n. September 2018, p. 55–68, 2019. DOI: https://doi.org/10.1016/j.catena.2019.04.010

WIEGAND, C. et al. Geomorphology Regolith structure analysis — A contribution to understanding the local occurrence of shallow landslides ( Austrian Tyrol ). Geomorphology, v. 183, p. 5–13, 2013. DOI: https://doi.org/10.1016/j.geomorph.2012.06.027

WOLLE, C. M. Análise dos escorregamentos translacionais numa região da Serra do Mar no contexto de uma classificação de mecanismos de instabilização de encosta. Tese (Doutorado em Engenharia) – Escola Politécnica, Universidade de São Paulo, São Paulo, 1988.

WOLLE, C. M.; HACHICH, W. Rain-induced landslides in southeastern Brasil. In: 12th International Conference on Soil Mechanics and Foundation Engineering. Proceedings [...] Rio de Janeiro, RJ. 1989. Available in: https://www.issmge.org/uploads/publications/1/33/1989_03_0041.pdf

ZUNG, A. B.; SORENSON, C. J.; WINTHERS, E. Landslide Soils and Geomorphology in Bridger-Teton National Forest, Northwest Wyoming. Physical Geography, v. 30, n. 6, p. 501–516, nov. 2009. DOI: https://doi.org/10.2747/0272-3646.30.6.501

Descargas

Publicado

2022-02-10

Número

Sección

Artigos

Cómo citar

Coelho, R. D., Gramani, M. F., & Vieira, B. C. (2022). Soil physical properties and slope stability in Serra do Mar, southeastern Brazil. Revista Do Departamento De Geografia, 42, e188406. https://doi.org/10.11606/eISSN.2236-2878.rdg.2022.188406

Datos de los fondos