Revisão da anatomia do sistema nervoso central de Apis mellifera: uma base teórica para estudos ecotoxicológicos

Autores

  • Patricia Azevedo Universidade Federal de São Carlos
  • Roberta Cornélio Ferreira Nocelli Universidade Federal de São Carlos

DOI:

https://doi.org/10.11606/issn.1984-5154.v20p10-20

Palavras-chave:

fisiologia, sistema nervoso, cérebro, corpo pedunculado

Resumo

As abelhas são essenciais para a manutenção da variabilidade genética vegetal de plantas silvestres e cultivadas e, consequentemente, para a segurança alimentar mundial. Contudo, são altamente vulneráveis à ação neurotóxica de inseticidas, pelos quais têm como alvo de ação principal o Sistema Nervoso Central e Periférico. A busca por mudanças nas legislações vigentes para avaliação de risco e registro de agrotóxicos têm impulsionado diversos estudos ecotoxicológicos, sendo que avaliações dos impactos desses produtos em nível anatômico e celular são comumente utilizadas. Dessa forma, esta revisão buscou compilar informações essenciais da anatomia do Sistema Nervoso Central da abelha A. mellifera, espécie modelo e a mais estudada mundialmente, presentes na literatura e propõe novos esquemas, a fim de facilitar um primeiro contato do leitor com esse sistema visando orientar posteriores aprofundamentos sobre o assunto.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Almeida Rossi C, Roat TC, Tavares DA, Cintra-Socolowski P, Malaspina O. 2013. Brain morphophysiology of Africanized bee Apis mellifera exposed to sublethal doses of imidacloprid. Archives of environmental contamination and toxicology, 65(2):234-243.

Antonio DSM, Hartfelder K. 2016. Toward an Understanding of Divergent Compound Eye Development in Drones and Workers of the Honeybee (Apis mellifera L.): A Correlative Analysis of Morphology and Gene Expression. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 328B:139-156.

Ayali A. 2004. The insect frontal ganglion and stomatogastric pattern generator networks. Neurosignals, 13(1-2):20-36.

Azevedo P, Butolo NP, de Alencar LD, Soares-Lima HM, Sales VR, Malaspina O, Nocelli RCF. 2020. Standardization of in vitro nervous tissue culture for honeybee: A high specificity toxicological approach. Ecotoxicology and environmental safety, 189(110040).

Banerjee SK, Bharadwaj RK. 1974. The nervous system and muscle innervations of Apis cerana indica (Hymenoptera: Apidae). Journal of Natural History, 8(1):19-28.

Barchuk AR, Santos GD dos, Caneschi RD, de Paula Junior DE, Moda LMR. 2017. The ontogenic saga of a social brain. Apidologie, 49:32-48.

Brandt R et al. 2005. A three‐dimensional average‐shape atlas of the honeybee brain and its applications. Journal of Comparative Neurology, 492(1):1-19.

Brittain C, Potts SG. 2011. The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination. Basic and Applied Ecology, 12(4):321– 331.

Bicker G, Schäfer S, Rehder V. 1987. Chemical neuroanatomy of the honeybee brain. In: Neurobiology and Behavior of Honeybees (edited by Menzel R. e Mercer A.) p202–224.

Boleli IC, Paulino Simões ZL, Hartfelder K. 1998. The stomatogastric nervous system of the honey bee (Apis mellifera) in a critical phase of caste development. Journal of morphology, 236(2):139-149.

Butolo NP, Azevedo P, Alencar LDD, Domingues CE, Miotelo L, Malaspina O, Nocelli RCF. 2020. A high quality method for hemolymph collection from honeybee larvae. PloS one, 15(6):e0234637.

Catae AF, Roat TC, Pratavieira M, da Silva Menegasso AR, Palma MS, Malaspina O. 2018. Exposure to a sublethal concentration of imidacloprid and the side effects on target and nontarget organs of Apis mellifera (Hymenoptera, Apidae). Ecotoxicology, 27(2):109-121.

Cham KDO, Rebelo RM, Oliveira RDP, Ferro AA, Vianasilva FDC, Borges LDO, Macedo TC. 2017. Manual de avaliação de risco ambiental de agrotóxicos para abelhas. Brasília: Ibama/Diqua, 105.

Chmiel JA, Daisley BA, Pitek AP, Thompson GJ, Reid G. 2020. Understanding the Effects of Sublethal Pesticide Exposure on Honey Bees: A Role for Probiotics as Mediators of Environmental Stress. Frontiers in Ecology and Evolution, 8(22).

Concio CJH. 2019. Bees declared to be the most impotant living being on Earth. Recuperado em 09 de julho, 2019, de https://www.sciencetimes.com/articles/23245/20190709/bees-are-the-most-important-living-being-on-earth.htm.

Cruz-Landim C. 2009. Abelhas - Morfologia e Função de Sistemas. 1ª ed. São Paulo: Editora UNESP, 407 p.

Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-Delègue MH. 2004. Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicology and Environmental Safety , 57(3):410-419.

Decourtye A, Devillers J, Genecque E, Le Menach K, Budzinski H, Cluzeau S, Pham-Dele`gue MH. 2005. Comparative sub-lethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Archives of Environmental Contamination and Toxicology, 48:242–250.

De Moraes RF. 2019. Agrotóxicos no Brasil: padrões de uso, política da regulação e prevenção da captura regulatória TD 2506. Brasília: IPEA, 76.

Dietzch AC, Jütte T. 2020. Non-Apis bees as model organisms in laboratory, semi-field and field experiments. Journal für Kulturpflanzen, 72(5):162-172.

Edenfeld G, Stork T, Klämbt C. 2005. Neuron-glia interaction in the insect nervous system. Current opinion in neurobiology, 15(1):34-39.

European Food Safety Authority (EFSA) 2013. Guidance Document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal, 11(7):3295.

Fahrbach SE. 2006. Structure of the mushroom bodies of the insect brain. Annual Review of Entomology., 51:209-232.

Food and Agriculture Organization of the United Nations (FAO). 2018. Unlocking the potential of agriculture innovation for family farmers - Thematic catalogue for smallholder farmers to promote innovation. Licence: CC BY-NC-SA 3.0 IGO, 100p.

Food and Agriculture Organization of the United Nations (FAO). 2004. Conservation and management of pollinators for sustainable agriculture. The international response. In: Freitas BM, Pereira JOP (orgs) Solitary Bees: Conservation, Rearing and Management for Pollination, Imprensa Universitária: Fortaleza, p19-25.

Farris SM, Robinson GE, Davis RL, Fahrbach SE. 1999. Larval and pupal development of the mushroom bodies in the honey bee, Apis mellifera. Journal of Comparative Neurology, 414(1):97-113.

Farris SM, Robinson GE, Fahrbach SE. 2001. Experience-and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. Journal of Neuroscience, 21(16):6395-6404.

Galizia CG, Rössler W. 2010. Parallel olfactory systems in insects: anatomy and function. Annual review of entomology, 55:399-420.

Galizia CG. 2007. Neuroscience: Brainwashing, honeybee style. Science, 317(5836):326-327.

Giannini TC, Cordeiro GD, Freitas BM, Saraiva AM, Imperatriz-Fonseca VL. 2015. The dependence of crops for pollinators and the economic value of pollination in Brazil. Journal of Economic Entomology, 108(3):849-857.

Giurfa M. 2007. Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. Journal of Comparative Physiology A, 193(8):801-824.

Giurfa M. 2013. Cognition with few neurons: higher-order learning in insects. Trends in neurosciences, 36(5):285-294.

Goulson D, Nicholls E, Botías C, Rotheray EL. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229).

Grab H, Branstetter MG, Amon N, Urban-Mead KR, Park MG, Gibbs J, Blitzer EJ, Poveda K, Loeb G, Danforth BN. 2019. Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science, 363(6424):282-284.

Gronenberg W. 2001. Subdivisions of hymenopteran mushroom body calyces by their afferent supply. Journal of Comparative Neurology, 435(4):474-489.

Guerrieri F, Schubert M, Sandoz JC, Giurfa M. 2005. Perceptual and neural olfactory similarity in honeybees. PLoS Biology, 3(4):e60.

Guez D, Belzunces LP, Maleszka R. 2003. Effects of imidacloprid metabolites on habituation in honeybees suggest the existence of two subtypes of nicotinic receptors differentially expressed during adult development. Pharmacology Biochemistry and Behavior, 75:217-222.

Hähnlein I, Bicker G. 1997. Glial patterning during postembryonic development of central neuropiles in the brain of the honeybee. Development genes and evolution, 207(1):29-41.

Hammer M, Menzel R. 1995. Learning and memory in the honeybee. Journal of Neuroscience, 15(3):1617-1630.

Hammer M. 1997. The neural basis of associative reward learning in honeybees. Trends in neurosciences, 20(6):245-252.

Hartenstein V. 1997. Development of the insect stomatogastric nervous system. Trends in neurosciences, 20(9):421-427.

Heisenberg M. 1998. What do the mushroom bodies do for the insect brain? An introduction. Learning & Memory, 5(1):1-10.

Held M, Berz A, Hensgen R, Muenz TS, Scholl C, Rössler W, Pfeiffer K. 2016. Microglomerular synaptic complexes in the sky-compass network of the honeybee connect parallel pathways from the anterior optic tubercle to the central complex. Frontiers in behavioral neuroscience, 10(186).

Hensgen R, England L, Homberg U, Pfeiffer K. 2020. Neuroarchitecture of the central complex in the brain of the honeybee: neuronal cell types. Journal of Comparative Neurology,1-28.

Homberg U. 1984. Processing of antennal information in extrinsic mushroom body neurons of the bee brain. Journal of Comparative Physiology A, 154(6):825-836.

Horridge A. 2005. What the honeybee sees: a review of the recognition system of Apis mellifera. Physiological Entomology, 30(1):2-13.

Hourcade B, Muenz TS, Sandoz JC, Rössler W, Devaud JM. 2010. Long-term memory leads to synaptic reorganization in the mushroom bodies: a memory trace in the insect brain? Journal of Neuroscience, 30(18):6461-6465.

Imperatriz-Fonseca VL. 2004. Serviços aos ecossistemas, com ênfase nos polinizadores e polinização. São Paulo: USP.

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA). 2017. Nota técnica: Avaliação de risco de agrotóxicos para insetos polinizadores e lacunas de conhecimento. Recuperado em 20 de julho, 2020, de https://www.gov.br/ibama/pt-br/centrais-de-conteudo/nota-tecnica-avaliacao-de-risco-de-agrotoxicos-pdf/view.

Kearns C, Inouye DW. 1997. Pollinators, flowering plants, and conservation biology. Much remains to be learned about pollinators and plants. Bioscience, 47(3):297-307.

Keller E. 2019. Nervous system of a honey bee illustration. Recuperado em 20 de junho, 2020, de https://www.bloopatone.com/projects/nQ20Yr.

Kenyon FC. 1896. The brain of the bee. A preliminary contribution to the morphology of the nervous system of the Arthropoda. Journal of Comparative Neurology, 6(3):133-210.

Kiljanek T, Niewiadowska A, Posyniak A. 2016. Pesticide poisoning of honeybees: a review of symptoms, incident classification, and causes of poisoning. Journal of Apicultural Science, 60(2):5-24.

Kiya T, Kunieda T, Kubo T. 2007. Increased neural activity of a mushroom body neuron subtype in the brains of forager honeybees. Plos One, 2(4):371.

Kloppenburg P. 1995. Anatomy of the antennal motoneurons in the brain of the honeybee (Apis mellifera). Journal of Comparative Neurology, 363(2):333-343.

Komischke B, Sandoz J-C, Malun D, Giurfa M. 2005. Partial unilateral lesions of the mushroom bodies affect olfactory learning in honeybees Apis mellifera L. European Journal of Neuroscience, 21(2):477-485.

Kremen C. 2005. Managing ecosystem services: what do we need to know about their ecology? Ecology letters, 8(5):468-479.

Lima MCD, Rocha SDA. 2012. Efeitos dos agrotóxicos sobre as abelhas silvestres no Brasil. Brasília: Ibama.

Lu C, Hung YT, Cheng Q. 2020. A Review of Sub-lethal Neonicotinoid Insecticides Exposure and Effects on Pollinators. Current Pollution Reports, 1-15.

Medrzycki P, Montanari R, Bortolotti L, Sabatini AG, Maini S, Porrini C. 2003. Effects of imidacloprid administered in sub-lethal doses on honey bee behaviour. Bulletin of Insectology, 56(1):59-62.

Menzel R, Mercer AR (eds). 1987. Neurobiology and behaviour of honey bees. Berlin, Germany: Springer-Verlag p310.

Menzel R, Durst C, Erber J, Eichbaum S. 1994. The mushroom bodies in the honeybee: from molecules to behaviour. Fortschritte der zoologie, 39:81-81.

Menzel R, Giurfa M. 2001. Cognitive architecture of a mini-brain: the honeybee. Trends in cognitive sciences, 5(2):62-71.

Menzel R, Leboulle G, Eisenhardt D. 2006. Small brains, bright minds. Cell, 124(2):237-239.

Mitchell BK, Itagaki H, Rivet MP. 1999. Peripheral and central structures involved in insect gustation. Microscopy research and technique, 47(6):401-415.

Mota T, Yamagata N, Giurfa M, Gronenberg W, Sandoz JC. 2011. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain. Journal of Neuroscience, 31(32):11443-11456.

Niven JE, Graham CM, Burrows M. 2008. Diversity and evolution of the insect ventral nerve cord. Annual review of entomology, 53:253-271.

Organisation for Economic Co-operation and Development (OECD). 1998. Test No. 213: Honeybees, Acute Oral Toxicity Test. Guidelines for the Testing of Chemicals, Section 2). Recuperado em 30 de junho, 2020, de https://www.oecd-ilibrary.org/environment/test-no-213- honeybees-acute-oral-toxicity-test_9789264070165-en.

Oland LA, Tolbert LP. 2003. Key interactions between neurons and glial cells during neural development in insects. Annual review of entomology, 48(1):89-110.

Oliveira RA, Roat TC, Carvalho SM, Malaspina O. 2014. Side‐effects of thiamethoxam on the brain and midgut of the africanized honeybee Apis mellifera (Hymenopptera: Apidae). Environmental Toxicology, 29(10):1122-1133.

Paulk AC, Gronenberg W. 2008. Higher order visual input to the mushroom bodies in the bee, Bombus impatiens. Arthropod structure & development, 37(6):443-458.

Paulk AC, Dacks AM, Phillips-Portillo J, Fellous JM, Gronenberg W. 2009. Visual processing in the central bee brain. Journal of Neuroscience, 29(32):9987-9999.

Rehder V, Boycott BB. 1988. A neuroanatomical map of the suboesophageal and prothoracic ganglia of the honey bee (Apis mellifera). Proceedings of the Royal society of London. Series B. Biological sciences, 235(1279):179-202.

Rehder V. 1989. Sensory pathways and motoneurons of the proboscis reflex in the suboesophageal ganglion of the honey bee. Journal of Comparative Neurology, 279(3):499-513.

Ribi W, Warrant E, Zeil J. 2011. The organization of honeybee ocelli: Regional specializations and rhabdom arrangements. Arthropod structure & development, 40(6):509-520.

Roat TC, Nocelli RCF, Landim CC. 2005. Comparative study of the brain of workers, queens and males of Apis mellifera (Hymenoptera: Apidae). Anais do XX Congresso da Sociedade Brasileira de Microscopia e Microanalise. Brazilian Journal of Morphological Sciences, Águas de Lindóia, SP, Brasil.

Roat TC, da Cruz Landim C. 2008. Temporal and morphological differences in post-embryonic differentiation of the mushroom bodies in the brain of workers, queens, and drones of Apis mellifera (Hymenoptera, Apidae). Micron, 39(8):1171-1178.

Roat TC, da Cruz Landim C. 2010. Differences in mushroom bodies morphogenesis in workers, queens and drones of Apis mellifera: Neuroblasts proliferation and death. Micron, 41(4):382-389.

Roat TC, da Cruz-Landim C. 2011. Differentiation of the honey bee (Apis mellifera L.) antennal lobes during metamorphosis: a comparative study among castes and sexes. Animal Biology, 61(2):153-161.

Rybak J, Kuss A, Lamecker H, Zachow S, Hege H, Lienhard M, Singer J, Neubert K, Menzel R. 2010. The digital bee brain: integrating and managing neurons in a common 3D reference system. Frontiers in Systems Neuroscience, 4:30.

Rybak J. 2012. The digital honey bee brain atlas. In: Honeybee Neurobiology and Behavior. Dordrecht: Springer, p. 125-140.

Selvaraj R, Schmidling N, Ryner A. 2020. Hives. Recuperado em 16 de julho, 2020, de https://digitalcommons.imsa.edu/slx/2020/socent/11/.

Schröter U, Malun D, Menzel R. 2007. Innervation pattern of suboesophageal ventral unpaired median neurones in the honeybee brain. Cell and tissue research, 327(3):647-667.

Schröter U, Menzel R. 2003. A new ascending sensory tract to the calyces of the honeybee mushroom body, the subesophageal‐calycal tract. Journal of Comparative Neurology, 465(2): 168-178.

Strausfeld NJ. 2002. Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes. Journal of Comparative Neurology, 450(1):4-33.

Stone T, Webb B, Adden A, Weddig NB, Honkanen A, Templin R, Heinze S. 2017. An anatomically constrained model for path integration in the bee brain. Current Biology, 27(20): 3069-3085.

Toh Y, Kuwabara M. 1974. Fine structure of the dorsal ocellus of the worker honeybee. Journal of Morphology, 143(3):285-305.

Uhl P, Brühl CA. 2019. The impact of pesticides on flower‐visiting insects: A review with regard to European risk assessment. Environmental toxicology and chemistry, 38(11):2355-2370.

Winnington AP, Napper RM, Mercer AR. 1996. Structural plasticity of identified glomeruli in the antennal lobes of the adult worker honey bee. Journal of Comparative Neurology, 365(3):479-490.

Downloads

Publicado

2020-11-17

Edição

Seção

Revisão

Como Citar

Azevedo, P., & Nocelli, R. C. F. (2020). Revisão da anatomia do sistema nervoso central de Apis mellifera: uma base teórica para estudos ecotoxicológicos. Revista Da Biologia, 20(1), 10-20. https://doi.org/10.11606/issn.1984-5154.v20p10-20

Dados de financiamento