Seroprevalence of anti-SARS-CoV-2 among blood donors in Rio de Janeiro, Brazil

Autores

DOI:

https://doi.org/10.11606/s1518-8787.2020054002643

Palavras-chave:

Coronavirus Infections, immunology, Blood Donors, Serologic Tests, Seroepidemiologic Studies

Resumo

OBJECTIVE: To estimate the seroprevalence of antibodies to SARS-CoV-2 among blood donors in the state of Rio de Janeiro, Brazil. METHODS: Data were collected on 2,857 blood donors from April 14 to 27, 2020. This study reports crude prevalence of antibodies to SARS-CoV-2, population weighted prevalence for the state, and prevalence adjusted for test sensitivity and specificity. Logistic regression models were used to establish the correlates of SARS-CoV-2 prevalence. For the analysis, we considered collection period and site, sociodemographic characteristics, and place of residence. RESULTS: The proportion of positive tests for SARS-Cov-2, without any adjustment, was 4.0% (95%CI 3.3–4.7%), and the weighted prevalence was 3.8% (95%CI 3.1–4.5%). We found lower estimates after adjusting for test sensitivity and specificity: 3.6% (95%CI 2.7–4.4%) for the non-weighted prevalence, and 3.3% (95%CI 2.6–4.1%) for the weighted prevalence. Collection period was the variable most significantly associated with crude prevalence: the later the period, the higher the prevalence. Regarding sociodemographic characteristics, the younger the blood donor, the higher the prevalence, and the lower the education level, the higher the odds of testing positive for SARS-Cov-2 antibody. We found similar results for weighted prevalence. CONCLUSIONS: Our findings comply with some basic premises: the increasing trend over time, as the epidemic curve in the state is still on the rise; and the higher prevalence among both the youngest, for moving around more than older age groups, and the less educated, for encountering more difficulties in following social distancing recommendations. Despite the study limitations, we may infer that Rio de Janeiro is far from reaching the required levels of herd immunity against SARS-CoV-2.

 

Referências

Guan WJ, Zhong NS. Clinical characteristics of Covid-19 in China [reply].. N Engl J Med. 2020;382:10.1056/NEJMc2005203#sa5. https://doi.org/10.1056/NEJMc2005203a

Worldometer. COVID-19 Coronavirus Pandemic. United States; 2020 [cited 2020 May 7] Available from: https://www.worldometers.info/coronavirus/#countries.

Ministério da Saúde (BR). Painel de casos de doença pelo coronavírus 2019 (COVID-19) no Brasil. Brasília, DF; 2020 [cited 2020 May 6]. Available from: https://covid.saude.gov.br/

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2. https://doi.org/10.1016/S2213-2600(20)30076-X

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. https://doi.org/10.1016/S0140-6736(20)30211-7

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. https://doi.org/10.1001/jama.2020.1585

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5

Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science. 2020;368(6490):489-93. https://doi.org/10.1126/science.abb3221

Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7:4. https://doi.org/10.1186/s40779-020-0233-6

Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323(18):1843-4. https://doi.org/10.1001/jama.2020.3786

Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis [published online 2020 Feb 27]. J Virol. 2020. https://doi.org/10.1002/jmv.25727

Barreto ML, Barros AJD, Carvalho MS, Codeço CT, Hallal PRC, Medronho RA, et al. O que é urgente e necessário para subsidiar as políticas de enfrentamento da pandemia de COVID-19 no Brasil? Rev Bras Epidemiol. 2020;23:e200032. https://doi.org/10.1590/1980-549720200032

Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020;25(10):2000180. https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180

Bendavid E, Mulaney B, Sood N, Shah S, Ling E, Bromley-Dulfano R, et al. COVID-19 antibody seroprevalence in Santa Clara County, California. medRxiv (preprint). 2020. https://doi.org/10.1101/2020.04.14.20062463

Dimeglio C, Loubes JM, Deporte B, Dubois M, Latour J, Mansuy JM, et al. The SARS-CoV-2 seroprevalence is the key factor for deconfinement in France. J Infect. 2020 Apr 28:S0163-4453(20)30242-5.. https://doi.org/10.1016/j.jinf.2020.04.031

Erikstrup C, Hother CE, Pedersen OBV, Mølbak K, Skov RL, Holm DK, et al. Estimation of SARS-CoV-2 infection fatality rate by real-time antibodyscreening of blood donors. medRxiv (preprint). 2020. https://doi.org/10.1101/2020.04.24.20075291

Slot E, Hogema BM, Reusken CBEM, Reimerink JH, Molier M, Karregat JHM, et al. Herd immunity is not a realistic exit strategy during a COVID-19 outbreak. Res Sq (preprint). 2020. https://doi.org/10.21203/rs.3.rs-25862/v1

Ministerio da Saude (BR). Portaria de Consolidação nº 5, de 28 de setembro de 2017. Redefine o regulamento técnico de procedimentos hemoterápicos. Diário Oficial da União. 28 nov 2017.

Moreira JPL, Almeida RMVR, Rocha NCS, Luiz RR. Correção da prevalência autorreferida em estudos epidemiológicos com grandes amostras. Cad Saude Publica. 2016;32(12):e00050816. https://doi.org/10.1590/0102-311X00050816

Rio de Janeiro (Estado). Decreto nº 46.973 de 16 de março de 2020.: Reconhece a situação de emergência na saúde pública do Estado do Rio de Janeiro em razão do contágio e adota medidas enfrentamento da propagação decorrente do novo coronavírus (COVID-19), e dá outras providências. Diário Oficial do Estado do Rio de Janeiro.17 mar 2020; Parte 1:2

Almeida JFF, Conceição SV, Pinto LR, Magalhães VS, Nascimento IJ, Costa MP, et al. Previsão de disponibilidade de leitos nos estados brasileiros e Distrito Federal em função da pandemia de COVID-19, situação de leitos SUS e não-SUS. Belo Horizonte: Laboratório de Tecnologia de Apoio à Decisão em Saúde, NESCOM, UFMG; 2020 [cited 2020 May 7]. (Nota Técnica; nº 7). Available from: https://labdec.nescon.medicina.ufmg.br/wp-content/uploads/2020/05/Nota-Tecnica-NT7-Covid-19-3004.pdf

Altmann DM, Douek DC, Boyton RJ. What policy makers need to know about COVID-19 protective immunity. Lancet. 2020;395(10236):1527-9. https://doi.org/10.1016/S0140-6736(20)30985-5

Moore KA, Lipsitch M, Barry JM, Osterholm MT. COVID-19: The CIDRAP Viewpoint .Part 1: The future of the COVID-19 pandemic: lessons learned from pandemic influenza. Minneapolis, Minn: CIDRAP, University of Minnesota; 2020 [cited 2020 May 7] Available from: https://www.cidrap.umn.edu/sites/default/files/public/downloads/cidrap-covid19-viewpoint-part1_0.pdf

Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol. 2020;41(5):355-9. https://doi.org/10.1016/j.it.2020.03.007

Lima DLF, Dias AA, Rabelo RS, Cruz ID, Costa SC, Nigri FMN, et al. COVID-19 no Estado do Ceará: comportamentos e crenças na chegada da pandemia.. Cienc Saude Coletiva. 2020;25(5):1575-86. https://doi.org/10.1590/1413-81232020255.07192020

Publicado

2020-07-06

Edição

Seção

Artigos Originais

Como Citar

Luiz Amorim Filho, Szwarcwald, C. L. ., Sheila de Oliveira Garcia Mateos, Antonio Carlos Monteiro Ponce de Leon, Roberto de Andrade Medronho, Valdiléa Gonçalves Veloso, Josiane Iole França Lopes, Luis Cristovão de Moraes Sobrino Porto, Alexandre Chieppe, & Guilherme Loureiro Werneck. (2020). Seroprevalence of anti-SARS-CoV-2 among blood donors in Rio de Janeiro, Brazil. Revista De Saúde Pública, 54, 69. https://doi.org/10.11606/s1518-8787.2020054002643