O quê, para quê e como? Desenvolvendo instrumentos de aferição em epidemiologia

Autores

DOI:

https://doi.org/10.11606/s1518-8787.2021055002813

Palavras-chave:

Medidas em Epidemiologia, Confiabilidade dos Dados, Comparação Transcultural, Estudos de Validação como Assunto

Resumo

Embora fundamental para a pesquisa epidemiológica, o desenvolvimento e a adaptação transcultural de instrumentos de aferição têm recebido menos destaque nas discussões metodológicas que permeiam o campo. Em paralelo, a qualidade das mensurações realizadas em muitos estudos epidemiológicos está frequentemente aquém do desejado para a construção de conhecimento sólido sobre o processo saúde-doença. A escassez de sistematizações sobre o que, para que e como aferir na área provavelmente contribui para esse cenário. Nesta revisão, propomos um modelo processual composto por uma sequência de etapas voltadas à mensuração de construtos em níveis aceitáveis de validade, confiabilidade e, por extensão, comparabilidade. Subjaz à proposta a ideia de que não apenas alguns, mas diversos estudos concatenados entre si e sucessivamente mais aprofundados devem ser conduzidos para obter aferições adequadas. A implementação do modelo poderá contribuir para alargar o interesse sobre instrumentos de aferição e, especialmente, para enfrentar os problemas investigados em epidemiologia.

Referências

Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3. ed. mid-cycle rev ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2012. 851 p. [ Links ]

Evans AS. Causation and disease: a chronological journey: the Thomas Parran lecture. Am J Epidemiol. 1978;108(4):249-58. https://doi.org/10.1093/oxfordjournals.aje.a112617 [ Links ]

Bastos JL, Reichenheim ME, Moraes CL. Measurement instruments for use in oral epidemiology. In: Peres MA, Antunes JL, Watt RG, editors. Oral epidemiology: a textbook on oral health conditions, research topics and method. New York: Springer; 2021. p. 465-77. (Textbooks in Contemporary Dentistry). [ Links ]

Hennekens CE, Buring JE. Epidemiology in medicine. Boston, MA: Lippincott Williams & Wilkins; 1987. 383 p. [ Links ]

Hernán M, Robins J. Causal Inference: what if. Boca Raton, FL: Chapman & Hall/CRC; 2020. [ Links ]

Reichenheim ME, Moraes CL. Qualidade dos instrumentos epidemiológicos. In: Almeida-Filho N, Barreto M, editores. Epidemiologia & saúde: fundamentos, métodos e aplicações. Rio de Janeiro: Guanabara-Koogan; 2011. p. 150-64. [ Links ]

Streiner DL, Norman GR, Cairney J. Health measurement scales: a practical guide to their development and use. 5. ed. Oxford: Oxford University Press; 2015. 399 p. [ Links ]

Bastos JL, Duquia RP, González-Chica DA, Mesa JM, Bonamigo RR. Field work I: selecting the instrument for data collection. An Bras Dermatol. 2014;89(6):918-23. https://doi.org/10.1590/abd1806-4841.20143884 [ Links ]

Berry JW, Poortinga YH, Segall MH, Dasen PR. Cross-cultural psychology: research and applications. New York: Cambridge University Press; 2002. [ Links ]

Herdman M, Fox-Rushby J, Badia X. “Equivalence” and the translation and adaptation of health-related quality of life questionnaires. Qual Life Res. 1997;6(3):237-47. https://doi.org/10.1023/a:1026410721664 [ Links ]

Reichenheim ME, Moraes CL. Operacionlalização de adaptação transcultural de instrumentos de aferição usados em epidemiologia. Rev Saude Publica. 2007;41(4):665-73. https://doi.org/10.1590/S0034-89102006005000035 [ Links ]

Reichenheim ME, Hökerberg YHM, Moraes CL. Assessing construct structural validity of epidemiological measurement tools: a seven-step roadmap. Cad Saude Publica. 2014;30(5):927-39. https://doi.org/10.1590/0102-311X00143613 [ Links ]

Wilson M. Constructing measures. an item response modeling approach. Mahwah, NJ: Lawrence Erlbaum Associates Publishers; 2005. 284 p. [ Links ]

Duckor BM, Draney K, Wilson M. Measuring measuring: toward a theory of proficiency with the constructing measures framework. J Appl Meas. 2009;10(3):296-319. [ Links ]

Mokkink LB, Terwee CB, Knol DL, Stratford PW, Alonso J, Patrick DL, et al. The COSMIN checklist for evaluating the methodological quality of studies on measurement properties: a clarification of its content. BMC Med Res Methodol. 2010;10:22. https://doi.org/10.1186/1471-2288-10-22 [ Links ]

Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63(7):737-45. https://doi.org/10.1016/j.jclinepi.2010.02.006 [ Links ]

Brown TA. Confirmatory factor analysis for applied research. 2 ed. New York: The Guilford Press; 2015. 462 p. [ Links ]

Asparouhov T, Muthén B. Multiple-group factor analysis alignment. Struct Equ Modeling. 2014;21(4):495-508. https://doi.org/10.1080/10705511.2014.919210 [ Links ]

Kline RB. Principles and practice of structural equation modeling. 4. ed. London: The Guilford Press; 2015. [ Links ]

Van de Schoot R, Schmidt P, De Beuckelaer A. Measurement invariance. Lausanne: Front Media; 2015. 217 p. [ Links ]

Van der Linden WJ. Handbook of item response theory. Boca Raton, FL: Chapman and Hall/CRC; 2018. 1688 p. [ Links ]

Kolen MJ, Brennan RL. Test equating, scaling, and linking: Methods and practices. 3 ed. New York: Springer; 2014. 566 p. [ Links ]

González J, Wiberg M. Applying test equating methods using R. New York: Springer; 2017. 196 p. [ Links ]

Sansivieri V, Wiberg M, Matteucci M. A review of test equating methods with a special focus on IRT-based approaches. Statistica. 2017;77(4):329-52. https://doi.org/10.6092/issn.1973-2201/7066 [ Links ]

Zhao Y, Chan W, Lo BCY. Comparing five depression measures in depressed Chinese patients using item response theory: an examination of item properties, measurement precision and score comparability. Health Qual Life Outcomes. 2017;15(1):60. https://doi.org/10.1186/s12955-017-0631-y [ Links ]

Wahl I, Löwe B, Bjorner JB, Fischer F, Langs G, Voderholzer U, et al. Standardization of depression measurement: a common metric was developed for 11 self-report depression measures. J Clin Epidemiol. 2014;67(1):73-86. https://doi.org/10.1016/j.jclinepi.2013.04.019 [ Links ]

Bond TG, Fox CM. Applying the Rasch model: fundamental measurement in the human sciences. 2. ed. Hove (UK): Psychology Press; 2013. [ Links ]

Muthén BO. Appendix 11 - Estimation of factor scores. In: Mplus - satistical analysis with latent variables technical appendices. Los Angeles, CA: Muthén & Muthén; 1998-2004, p. 47-48. [ Links ]

Masyn KE. Latent class analysis and finite mixture modeling. In: Little TD, editor. The Oxford handbook of quantitative methods. Oxford: Oxford University Press; 2013. p. 551-611. [ Links ]

Davidov E, Schmidt P, Billiet J, Meuleman B, editors. Cross-cultural analysis: methods and applications. 2. ed. London: Routledge; 2018. 648 p. [ Links ]

Reichenheim ME, Interlenghi GS, Moraes CL, Segall-Correa AM, Pérez-Escamilla R, Salles-Costa R. A model-based approach to identify classes and respective cutoffs of the Brazilian Household Food Insecurity Measurement Scale. J Nutr. 2016;146(7):1356-64. https://doi.org/10.3945/jn.116.231845 [ Links ]

Interlenghi GS, Reichenheim ME, Segall-Correa AM, Perez-Escamilla R, Moraes CL, Salles-Costa R. Modeling optimal cutoffs for the Brazilian Household Food Insecurity Measurement Scale in a nationwide representative sample. J Nutr. 2017;147(7):1356-65. https://doi.org/10.3945/jn.117.249581 [ Links ]

De Vet HCW, Terwee CB, Mokkink LB, Knol DL. Measurement in medicine: a practical guide. Cambridge: Cambridge University Press; 2011. 338 p. [ Links ]

Cronbach LJ, Meehl PE. Construct validity in psychological tests. Psychol Bull. 1955;52(4):281-302. https://doi.org/10.1037/h0040957 [ Links ]

VanderWeele T. Explanation in causal inference: methods for mediation and interaction. New York: Oxford University Press USA; 2015. 728 p. [ Links ]

Denzin NK, Lincoln YS, editors. The SAGE handbook of qualitative research. Los Angeles: SAGE Publications; 2011. 766 p. [ Links ]

McDowell I, Newell C. Measuring health: a guide to rating scales and questionnaires. 3. ed. New York: Oxford University Press; 2006. 748 p. [ Links ]

Nunnally JCJ, Bernstein I. Psychometric theory. 2. ed. New York: McGraw-Hill; 1995. [ Links ]

Raykov T, Marcoulides GA. Introduction to psychometric theory. New York: Routledge; 2011. 352 p. [ Links ]

Price LR. Psychometric methods: theory into practice. New York: Guilford Press; 2016. 552 p. [ Links ]

Shavelson RJ, Webb NM. Generalizability theory: a primer. Newbury Park, CA: SAGE Publications; 1991. 137 p. [ Links ]

Beatty PC, Collins D, Kaye L, Padilla JL, Willis GB, Wilmot A, editors. Advances in questionnaire design, development, evaluation and testing. Hoboken, NJ: John Wiley & Sons; 2019. 816 p. [ Links ]

Moser CA, Kalton G. Survey methods in social investigation. 2. ed. London: Heinemann; 1985. [ Links ]

Johnson RL, Morgan GB. Survey scales: a guide to development, analysis, and reporting. New York: Guilford Publications; 2016. 269 p. [ Links ]

DeVellis RF. Scale development: theory and applications. Thousand Oaks, CA: SAGE Publications; 2003. 171 p. [ Links ]

Gorenstein C, Wang YP, Hungerbühler I, compiladores. Instrumentos de avaliação em saúde mental. Porto Alegre, RS: Artmed; 2016. 500 p. [ Links ]

Reise SP, Waller NG. Fitting the two-parameter model to personality data. Appl Psychol Meas. 1990;14:45-58. https://doi.org/10.1177/014662169001400105 [ Links ]

Marsh HW, Muthén B, Asparouhov A, Lüdtke O, Robitzsch A, Morin AJS, et al. Exploratory structural equation modeling, integrating CFA and EFA: application to students’ evaluations of university teaching. Struct Equ Modeling. 2009;16(3):439-76. https://doi.org/10.1080/10705510903008220 [ Links ]

Kim JO, Mueller CW. Factor analysis: statistical methods and practical issues. Beverly Hills, CA: SAGE Publications; 1978. 88 p. (Quantitative Applications in t Quantitative Applications in the Social Sciences; vol. 14). [ Links ]

Wang J, Wang X. Structural equation modeling: applications using Mplus. Chichester (UK): Wiley-Blackwell; 2012. 478 p. [ Links ]

Ford JK, MacCallum RC, Tait M. The application of factor analysis in applied psychology: a critical review and analysis. Pers Psychol. 1986;39(2):291-314. https://doi.org/10.1111/j.1744-6570.1986.tb00583.x [ Links ]

Kamata A, Bauer DJ. A note on the relation between factor analytic and item response theory models. Struct Equ Modeling. 2008;15(1):136-53. https://doi.org/10.1080/10705510701758406 [ Links ]

Reeve BB, Hays RD, Bjorner JB, Cook KF, Crane PK, Teresi JA, et al. Psychometric evaluation and calibration of health-related quality of life item banks: plans for the Patient-Reported Outcomes Measurement Information System (PROMIS). Med Care. 2007;45(5 Suppl 1):S22-31. https://doi.org/10.1097/01.mlr.0000250483.85507.04 [ Links ]

Chen WH, Thissen D. Local dependence indexes for item pairs using item response theory. J Educ Behav Stat. 1997;22(3):265-89. https://doi.org/10.2307/1165285 [ Links ]

Liu Y, Thissen D. Identifying local dependence with a score test statistic based on the bifactor logistic model. Appl Psychol Meas. 2012;36(8):670-88. https://doi.org/10.1177/0146621612458174 [ Links ]

Yen WM. Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. Appl Psychol Meas. 1984;8(2):125-45. https://doi.org/10.1177/014662168400800201 [ Links ]

Ayala RJ. The theory and practice of item response theory. New York: The Guilford Press; 2009. 448 p. [ Links ]

Paek I, Cole K. Using R for item response theory model applications. London: Routledge; 2019. 271 p. [ Links ]

Podsakoff PM, MacKenzie SB, Lee JY, Podsakoff NP. Common method biases in behavioral research: a critical review of the literature and recommended remedies. J Appl Psychol. 2003;88(5):879-903. https://doi.org/10.1037/0021-9010.88.5.879 [ Links ]

Hair JF, Babin BJ, Anderson RE, Black WC. Multivariate data analysis. 7. ed. London: Cengage Learning EMEA; 2010. 832 p. [ Links ]

Little TD. Longitudinal structural equation modeling. New York: Guilford Press; 2013. 386 p. [ Links ]

Embretson SE, Reise SP. Item response theory for psychologists. Maheah, NJ: Lawrence Erlbaum Associates; 2000. 371 p. (Multivariate Appications Book Series; vol.4). [ Links ]

Hardouin JB, Bonnaud-Antignac A, Sebille V. Nonparametric item response theory using Stata. Stata J. 2011;11(1):30-51. https://doi.org/10.1177/1536867X1101100102 [ Links ]

Sijtsma K, Molenaar IW. Introduction to nonparametric item response theory. Thousand Oaks, CA: SAGE Publications; 2002. 176 p. (Measurement Methods for the Social Science; vol 5). [ Links ]

Sijtsma K, Molenaar IW. Mokken models. In: Van der Linden WJ, editor. Handbook of item response theory; vol 3: Applications. Boca Raton, FL: Chapman and Hall/CRC; 2018; p. 303-321. [ Links ]

Mokken RJ. A theory and procedure of scale analysis. Berlin: De Gruyter Mouton; 1971. 353 p. [ Links ]

Gorsuch RL. Factor analysis. 2. ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1983. 425 p. [ Links ]

Rummel RJ. Applied factor analysis. 4. ed. Evanston, Ill: Northwestern University Press; 1988. 617 p. [ Links ]

De Boeck P, Wilson M, editors. Explanatory item response models: a generalized linear anad nonlinear approach. New York: Springer; 2004. 382 p. [ Links ]

Lissitz RW, editor. The concept of validity: revisions, new directions and applications. Charlotte, NC: Information Age Pubishing; 2009. 263 p. [ Links ]

Armitage P, Berry G, Matthews JNS. Statistical methods in medical research. 4. ed. London: Blackwell Scientific Publications; 2001. 816 p. [ Links ]

Corder GW, Foreman DI. Nonparametric statistics: a step-by-step approach. 2.ed. Hoboken, NJ: John Wiley & Sons; 2014. 288 p. [ Links ]

Publicado

2021-08-09

Edição

Seção

Artigos Originais

Como Citar

Reichenheim, M., & Bastos, J. L. (2021). O quê, para quê e como? Desenvolvendo instrumentos de aferição em epidemiologia. Revista De Saúde Pública, 55, 40. https://doi.org/10.11606/s1518-8787.2021055002813

Dados de financiamento